ﻻ يوجد ملخص باللغة العربية
We consider the evolution of black hole involving an $f(R)$ global monopole based on the Extended Uncertainty Principle (EUP). The black hole evolutions refer to the instability due to the Parikh-Kraus-Wilczeck tunneling radiation or fragmentation. It is found that the EUP corrections make the entropy difference larger to encourage the black hole to radiate more greatly. We also show that the appearance of the EUP effects result in the black holes division. The influence from global monopole and the revision of general relativity can also adjust the black hole evolution simultaneously, but can not change the final result that the black hole will not be stable because of the EUPs effects.
The Parikh-Kraus-Wilczeck tunneling radiation of black hole involving a $f(R)$ global monopole is considered based on the generalized uncertainty principle. The influences from global monopole, $f(R)$ gravity and the corrections to the uncertainty ap
The fragmentation of black hole containing $f(R)$ global monopole under GUP is studied. We focus on that the black hole breaks into two parts. We derive the entropies of the initial black hole and the broken parts while the generalization of Heisenbe
We further the investigation on the Parikh-Kraus-Wilczeck tunneling radiation of Kehagias-Sfetsos black hole under the generalized uncertainty principle. We obtain the entropy difference involving the influence from the inequality. The two terms as g
We analyze the thermodynamics of a black hole in a region that contains a global monopole in the framework of a particular class of a f(R) gravity. Specifically, we study the case in which df(R)/dR = F(R) is a power law function of the radial coordin
Hawking flux from the Schwarzschild black hole with a global monopole is obtained by using Robinson and Wilczeks method. Adopting a dimension reduction technique, the effective quantum field in the (3+1)--dimensional global monopole background can be