ﻻ يوجد ملخص باللغة العربية
We discuss the $U(1)$ gauged Q-balls with $N$-power potential to examine their properties analytically. More numerical descriptions and some analytical consideration have been contributed to the models governed by four-power potential. We also demonstrate strictly some new limitations that the stable $U(1)$ gauged Q-balls should accept instead of estimating those with only some specific values of model variables numerically. Having derived the explicit expressions of radius, the Noether charge and energy of the gauged Q-balls, we find that these models under the potential of matter field with general power and the boundary conditions will exist instead of dispersing and decaying. The Noether charge of the large gauged Q-balls must be limited. The mass parameter of the model can not be tiny.
In this paper, we present a detailed study of the problem of classical stability of U(1) gauged Q-balls. In particular, we show that the standard methods that are suitable for establishing the classical stability criterion for ordinary (nongauged) on
Scalar field theories with particular U(1)-symmetric potentials contain non-topological soliton solutions called Q-balls. Promoting the U(1) to a gauge symmetry leads to the more complicated situation of gauged Q-balls. The soliton solutions to the r
Radially excited $U(1)$ gauged $Q$-balls are studied using both analytical and numerical methods. Unlike the nongauged case, there exists only a finite number of radially excited gauged $Q$-balls at given values of the models parameters. Similarly to
We show, by numerical calculations, that there exist three-types of stationary and spherically symmetric nontopological soliton solutions (NTS-balls) with large sizes in the coupled system consisting of a complex matter scalar field, a U(1) gauge fie
The analytical description on the Friedberg-Lee-Sirlin typed Q-balls is performed. The two-field Q-balls are also discussed under the one-loop motivated effective potential subject to the temperature. We prove strictly to confirm that the parameters