ترغب بنشر مسار تعليمي؟ اضغط هنا

70 - Hiroyuki Fujioka 2021
A hypothesis is proposed herein, suggesting that a pion-nuclear resonance may be observed in the $alpha+dto{}^6mathrm{Li}(3.563)+pi^0$ reaction. The resonance has a $pi NNalpha$ structure, containing $alpha NN$ and $pi NN$ subsystems. The former corr esponds to the $A=6$ isotriplet ($^6mathrm{He}_text{g.s.}$, $^6mathrm{Li}(3.563)$, $^6mathrm{Be}_text{g.s.}$), whereas the latter is a hypothetical $NN$-decoupled dibaryon. We propose an experiment to search for this resonance using the $^7mathrm{Li}(p,d)$ reaction.
Among the several flexible thermoelectric modules in existence, sintered Bi-Te-based modules represent a viable option because of their high output power density and flexibility, which enables the use of arbitrary heat sources. We have fabricated Bi- Te-based modules with a large-scalable fabrication process and improved their output performance. The reduction in the interconnection resistance, using thick electrodes of the flexible printed circuit, significantly improves the modules output power to 87 mW/cm$^{2}$ at $Delta T$ = 70 K, which is 1.3-fold higher than a previous prototype module. Furthermore, the establishment of the fabrication for the top electrodes by using the surface mount technology makes it possible to realize a high-throughput manufacturing of the module. Our durability tests reveal that there is no significant change in the internal resistance of the module during 10000 cycles of mechanical bending test and 1000 cycles of thermal stress test.
Theoretical material investigation based on density functional theory (DFT) has been a breakthrough in the last century. Nevertheless, the optical properties calculated by DFT generally show poor agreement with experimental results particularly when the absorption-coefficient ({alpha}) spectra in logarithmic scale are compared. In this study, we have established an alternative DFT approach (PHS method) that calculates highly accurate {alpha} spectra, which show remarkable agreement with experimental spectra even in logarithmic scale. In the developed method, the optical function estimated from generalized gradient approximation (GGA) using very high-density k mesh is blue-shifted by incorporating the energy-scale correction by a hybrid functional and the amplitude correction by sum rule. Our simple approach enables high-precision prediction of the experimental {alpha} spectra of all solar-cell materials (GaAs, InP, CdTe, CuInSe2 and Cu2ZnGeSe4) investigated here. The developed method is superior to conventional GGA, hybrid functional and GW methods and has clear advantages in accuracy and computational cost.
In semiconducting solar-cell absorbers, high absorption coefficient (alpha) near the band-edge region is critical to maximize the photocurrent generation and collection. Nevertheless, despite the importance of the band-edge absorption characteristics , the quantitative analysis of the band-edge optical transitions has not been performed. In this study, we have implemented systematic density functional theory (DFT) calculation, focusing on the band-edge oscillator strength of seven practical solar cell absorbers (GaAs, InP, CdTe, CuInSe2, CuGaSe2, Cu2ZnSnSe4, and Cu2ZnSnS4) with zincblende, chalcopyrite and kesterite structures. We find that all these crystals exhibit the giant oscillator strength near the band gap region, revealing the fact that alpha in the band gap region is enhanced significantly by the anomalous high oscillator strength. In high-energy optical transitions, however, the oscillator strength reduces sharply and the absorption properties are determined primarily by the joint density-of-state contribution. Based on DFT results, we show that the giant oscillator strength in the band edge region originates from a unique tetrahedral-bonding structure, with a negligible effect of constituent atoms.
We compute individual distributions of low-lying eigenvalues of massive chiral random matrix ensembles by the Nystrom-type quadrature method for evaluating the Fredholm determinant and Pfaffian that represent the analytic continuation of the Janossy densities (conditional gap probabilities). A compact formula for individual eigenvalue distributions suited for precise numerical evaluation by the Nystrom-type method is obtained in an explicit form, and the $k^{rm{small th}}$ smallest eigenvalue distributions are numerically evaluated for chiral unitary and symplectic ensembles in the microscopic limit. As an application of our result, the low-lying Dirac spectra of the SU(2) lattice gauge theory with $N_F=8$ staggered flavors are fitted to the numerical prediction from the chiral symplectic ensemble, leading to a precise determination of the chiral condensateof a two-color QCD-like system in the future.
In this paper, we study how quantum correlation between subsystems changes in time by investigating time evolution of mutual information and logarithmic negativity in two protocols of mass quench. Hamiltonian in both protocols is for 2-dimensional fr ee scalar theory with time-dependent mass: the mass in one case decreases monotonically and vanishes asymptotically (ECP), and that in the other decreases monotonically before t = 0, but increases monotonically afterward, and becomes constant asymptotically (CCP). We study the time evolution of the quantum correlations under those protocols in two different limits of the mass quench; fast limit and slow limit depending on the speed with which the mass is changed. We obtain the following two results: (1) For the ECP, we find that the time evolution of logarithmic negativity is, when the distance between the two subsystems is large enough, well-interpreted in terms of the propagation of relativistic particles created at a time determined by the limit of the quench we take. On the other hand, the evolution of mutual information in the ECP depends not only on the relativistic particles but also on slowly-moving particles. (2) For the CCP, both logarithmic negativity and mutual information oscillate in time after the quench. When the subsystems are well-separated, the oscillation of the quantum correlations in the fast limit is suppressed, and the time evolution looks similar to that under the ECP in the fast limit.
Cylindrical vector beam (CVB) is a structured lightwave characterized by its topologically nontrivial nature of the optical polarization. The unique electromagnetic field configuration of CVBs has been exploited to optical tweezers, laser acceleratio ns, and so on. However, use of CVBs in research fields outside optics such as condensed matter physics has not progressed. In this paper, we propose potential applications of CVBs to those fields based on a general argument on their absorption by matter. We show that pulse azimuthal CVBs around terahertz (THz) or far-infrared frequencies can be a unique and powerful mean for time-resolved spectroscopy of magnetic properties of matter and claim that an azimuthal electric field of a pulse CVB would be a novel way of studying and controlling edge currents in topological materials. We also demonstrate how powerful CVBs will be as a tool for Floquet engineering of nonequilibrium states of matter.
We develop the Floquet-Magnus expansion for a classical equation of motion under a periodic drive that is applicable to both isolated and open systems. For classical systems, known approaches based on the Floquet theorem fail due to the nonlinearity and the stochasticity of their equations of motion (EOMs) in contrast to quantum ones. Here, employing their master equation, we successfully extend the Floquet methodology to classical EOMs to obtain their Floquet-Magnus expansions, thereby overcoming this difficulty. Our method has a wide range of application from classical to quantum as long as they are described by differential equations including the Langevin equation, the Gross-Pitaevskii equation, and the time-dependent Ginzburg-Landau equation. By analytically evaluating the higher-order terms of the Floquet-Magnus expansion, we find that it is, at least asymptotically, convergent and well approximates the relaxation to their prethermal or non-equilibrium steady states. To support these analytical findings, we numerically analyze two examples: (i) the Kapitza pendulum with friction and (ii) laser-driven magnets described by the stochastic Landau-Lifshitz-Gilbert equation. In both cases, the effective EOMs obtained from their Floquet-Magnus expansions correctly reproduce their exact time evolution for a long time up to their non-equilibrium steady states. In the example of driven magnets, we demonstrate the controlled generations of a macroscopic magnetization and a spin chirality by laser and discuss possible applications to spintronics.
Magnetic oscillation is a generic property of electronic conductors under magnetic fields and widely appreciated as a useful probe of their electronic band structure, i.e., the Fermi surface geometry. However, the usage of the strong static magnetic field makes the measurement insensitive to the magnetic order of the target material. That is, the magnetic order is anyhow turned into a forced ferromagnetic one. Here we theoretically propose an experimental method of measuring the magnetic oscillation in a magnetic-order-resolved way by using the azimuthal cylindrical vector (CV) beam, an example of topological lightwaves. The azimuthal CV beam is unique in that when focused tightly, it develops a pure longitudinal magnetic field. We argue that this characteristic focusing property and the discrepancy in the relaxation timescale between conduction electrons and localized magnetic moments allow us to develop the nonequilibrium analog of the magnetic oscillation measurement. Our optical method would be also applicable to metals the under ultra-high pressure of diamond anvil cells.
We calculate in detail the Renyi entanglement entropies of cTPQ states as a function of subsystem volume, filling the details of our prior work [Nature Communications 9, 1635 (2018)], where the formulas were first presented. Working in a limit of lar ge total volume, we find universal formulas for the Renyi entanglement entropies in a region where the subsystem volume is comparable to that of the total system. The formulas are applicable to the infinite temperature limit as well as general interacting systems. For example we find that the second Renyi entropy of cTPQ states in terms of subsystem volume is written universally up to two constants, $S_2(ell)=-ln K(beta)+ellln a(beta)-lnleft(1+a(beta)^{-L+2ell}right)$, where $L$ is the total volume of the system and $a$ and $K$ are two undetermined constants. The uses of the formulas were already presented in our prior work and we mostly concentrate on the theoretical aspect of the formulas themselves. Aside from deriving the formulas for the Renyi Page curves, the expression for the von Neumann Page curve is also derived, which was not presented in our previous work.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا