ﻻ يوجد ملخص باللغة العربية
In semiconducting solar-cell absorbers, high absorption coefficient (alpha) near the band-edge region is critical to maximize the photocurrent generation and collection. Nevertheless, despite the importance of the band-edge absorption characteristics, the quantitative analysis of the band-edge optical transitions has not been performed. In this study, we have implemented systematic density functional theory (DFT) calculation, focusing on the band-edge oscillator strength of seven practical solar cell absorbers (GaAs, InP, CdTe, CuInSe2, CuGaSe2, Cu2ZnSnSe4, and Cu2ZnSnS4) with zincblende, chalcopyrite and kesterite structures. We find that all these crystals exhibit the giant oscillator strength near the band gap region, revealing the fact that alpha in the band gap region is enhanced significantly by the anomalous high oscillator strength. In high-energy optical transitions, however, the oscillator strength reduces sharply and the absorption properties are determined primarily by the joint density-of-state contribution. Based on DFT results, we show that the giant oscillator strength in the band edge region originates from a unique tetrahedral-bonding structure, with a negligible effect of constituent atoms.
Tail state formation in solar cell absorbers leads to a detrimental effect on solar cell performance. Nevertheless, the characterization of the band tailing in experimental semiconductor crystals is generally difficult. In this article, to determine
Exciton problem is solved in the two-dimensional Dirac model with allowance for strong electron-hole attraction. The exciton binding energy is assumed smaller than but comparable to the band gap. The exciton wavefunction is found in the momentum spac
Solar-energy plays an important role in solving serious environmental problems and meeting high-energy demand. However, the lack of suitable materials hinders further progress of this technology. Here, we present the largest inorganic solar-cell mate
A variety of organic-inorganic hybrid perovskites (APbX3) consisting of mixed center cations [A = CH3NH3+, HC(NH2)2+, Cs+] with different PbX3- cages (X = I, Br, Cl) have been developed to realize high-efficiency solar cells. Nevertheless, clear unde
In kesterite CZTSSe solar cell research, an asymmetric crystallization profile is often obtained after annealing, resulting in a bilayered or double-layered absorber. So far, only segregated pieces of research exist to characterize this double layer,