ﻻ يوجد ملخص باللغة العربية
We develop the Floquet-Magnus expansion for a classical equation of motion under a periodic drive that is applicable to both isolated and open systems. For classical systems, known approaches based on the Floquet theorem fail due to the nonlinearity and the stochasticity of their equations of motion (EOMs) in contrast to quantum ones. Here, employing their master equation, we successfully extend the Floquet methodology to classical EOMs to obtain their Floquet-Magnus expansions, thereby overcoming this difficulty. Our method has a wide range of application from classical to quantum as long as they are described by differential equations including the Langevin equation, the Gross-Pitaevskii equation, and the time-dependent Ginzburg-Landau equation. By analytically evaluating the higher-order terms of the Floquet-Magnus expansion, we find that it is, at least asymptotically, convergent and well approximates the relaxation to their prethermal or non-equilibrium steady states. To support these analytical findings, we numerically analyze two examples: (i) the Kapitza pendulum with friction and (ii) laser-driven magnets described by the stochastic Landau-Lifshitz-Gilbert equation. In both cases, the effective EOMs obtained from their Floquet-Magnus expansions correctly reproduce their exact time evolution for a long time up to their non-equilibrium steady states. In the example of driven magnets, we demonstrate the controlled generations of a macroscopic magnetization and a spin chirality by laser and discuss possible applications to spintronics.
Light-matter coupling involving classical and quantum light offers a wide range of possibilities to tune the electronic properties of correlated quantum materials. Two paradigmatic results are the dynamical localization of electrons and the ultrafast
Periodic driving has emerged as a powerful experimental tool to engineer physical properties of isolated, synthetic quantum systems. However, due to the lack of energy conservation and heating effects, non-trivial (e.g., topological) many-body states
Superfluidity in e-h bilayers in graphene and GaAs has been predicted many times but not observed. A key problem is how to treat the screening of the Coulomb interaction for pairing. Different mean-field theories give dramatically different conclusio
Three-particle complexes consisting of two holes in the completely filled zero electron Landau level and an excited electron in the unoccupied first Landau level are investigated in a quantum Hall insulator. The distinctive features of these three-pa
We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamilton