ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio and mm-wavelength observations of Sagittarius A* (Sgr A*), the radio source associated with the supermassive black hole at the center of our Galaxy, show that it behaves as a partially self-absorbed synchrotron-emitting source. The measured siz e of Sgr A* shows that the mm-wavelength emission comes from a small region and consists of the inner accretion flow and a possible collimated outflow. Existing observations of Sgr A* have revealed a time lag between light curves at 43 GHz and 22 GHz, which is consistent with a rapidly expanding plasma flow and supports the presence of a collimated outflow from the environment of an accreting black hole. Here we wish to measure simultaneous frequency-dependent time lags in the light curves of Sgr A* across a broad frequency range to constrain direction and speed of the radio-emitting plasma in the vicinity of the black hole. Light curves of Sgr A* were taken in May 2012 using ALMA at 100 GHz using the VLA at 48, 39, 37, 27, 25.5, and 19 GHz. As a result of elevation limits and the longitude difference between the stations, the usable overlap in the light curves is approximately four hours. Although Sgr A* was in a relatively quiet phase, the high sensitivity of ALMA and the VLA allowed us to detect and fit maxima of an observed minor flare where flux density varied by ~10%. The fitted times of flux density maxima at frequencies from 100 GHz to 19 GHz, as well as a cross-correlation analysis, reveal a simple frequency-dependent time lag relation where maxima at higher frequencies lead those at lower frequencies. Taking the observed size-frequency relation of Sgr A* into account, these time lags suggest a moderately relativistic (lower estimates: 0.5c for two-sided, 0.77c for one-sided) collimated outflow.
Current wide-area radio surveys are dominated by active galactic nuclei, yet many of these sources have no identified optical counterparts. Here we investigate whether one can constrain the nature and properties of these sources, using Fanaroff-Riley type II (FRII) radio galaxies as probes. These sources are easy to identify since the angular separation of their lobes remains almost constant at some tens of arcseconds for z>1. Using a simple algorithm applied to the FIRST survey, we obtain the largest FRII sample to date, containing over ten thousand double-lobed sources. A subset of 459 sources is matched to SDSS quasars. This sample yields a statistically meaningful description of the fraction of quasars with lobes as a function of redshift and luminosity. This relation is combined with the bolometric quasar luminosity function, as derived from surveys at IR to hard X-ray frequencies, and a disc-lobe correlation to obtain a robust prediction for the density of FRIIs on the radio sky. We find that the observed density can be explained by the population of known quasars, implying that the majority of powerful jets originate from a radiatively efficient accretion flow with a linear jet-disc coupling. Finally, we show that high-redshift jets are more often quenched within 100 kpc, suggesting a higher efficiency of jet-induced feedback into their host galaxies.
60 - Heino Falcke 2013
Several fast radio bursts have been discovered recently, showing a bright, highly dispersed millisecond radio pulse. The pulses do not repeat and are not associated with a known pulsar or gamma-ray burst. The high dispersion suggests sources at cosmo logical distances, hence implying an extremely high radio luminosity, far larger than the power of single pulses from a pulsar. We suggest that a fast radio burst represents the final signal of a supramassive rotating neutron star that collapses to a black hole due to magnetic braking. The neutron star is initially above the critical mass for non-rotating models and is supported by rapid rotation. As magnetic braking constantly reduces the spin, the neutron star will suddenly collapse to a black hole several thousand to million years after its birth. We discuss several formation scenarios for supramassive neutron stars and estimate the possible observational signatures {making use of the results of recent numerical general-relativistic calculations. While the collapse will hide the stellar surface behind an event horizon, the magnetic-field lines will snap violently. This can turn an almost ordinary pulsar into a bright radio blitzar: Accelerated electrons from the travelling magnetic shock dissipate a significant fraction of the magnetosphere and produce a massive radio burst that is observable out to z>0.7. Only a few percent of the neutron stars needs to be supramassive in order to explain the observed rate. We suggest that fast radio bursts might trace the solitary formation of stellar mass black holes at high redshifts. These bursts could be an electromagnetic complement to gravitational-wave emission and reveal a new formation and evolutionary channel for black holes that are not seen as gamma-ray bursts. Radio observations of these bursts could trace the core-collapse supernova rate throughout the universe.
A star that passes too close to a massive black hole will be torn apart by tidal forces. The flare of photons emitted during the accretion of the stellar debris is predicted to be observable and candidates of such events have been observed at optical to X-ray frequencies. If a fraction of the accreted material is fed into a jet, tidal flares should be detectable at radio frequencies too, thus comprising a new class of rare radio transients. Using the well-established scaling between accretion power and jet luminosity and basic synchrotron theory, we construct an empirically-rooted model to predict the jet luminosity for a time-dependent accretion rate. We apply this model to stellar tidal disruptions and predict the snapshot rate of these events. For a small angle between the observer and the jet, our model reproduces the observed radio flux of the tidal flare candidate GRB 110328A. We find that future radio surveys will be able to test whether the majority of tidal disruptions are accompanied by a jet.
69 - Heino Falcke 2010
In this paper we review and discuss some of the intriguing properties of the Galactic Center supermassive black hole candidate Sgr A*. Of all possible black hole sources, the event horizon of Sgr A*, subtends the largest angular scale on the sky. It is therefore a prime candidate to study and image plasma processes in strong gravity and it even allows imaging of the shadow cast by the event horizon. Recent mm-wave VLBI and radio timing observations as well as numerical GRMHD simulations now have provided several breakthroughs that put Sgr A* back into the focus. Firstly, VLBI observations have now measured the intrinsic size of Sgr A* at multiple frequencies, where the highest frequency measurements have approached the scale of the black hole shadow. Moreover, measurements of the radio variability show a clear time lag between 22 GHz and 43 GHz. The combination of size and timing measurements, allows one to actually measure the flow speed and direction of magnetized plasma at some tens of Schwarzschild radii. This data strongly support a moderately relativistic outflow, consistent with an accelerating jet model. This is compared to recent GRMHD simulation that show the presence of a moderately relativistic outflow coupled to an accretion flow Sgr A*. Further VLBI and timing observations coupled to simulations have the potential to map out the velocity profile from 5-40 Schwarzschild radii and to provide a first glimpse at the appearance of a jet-disk system near the event horizon. Future submm-VLBI experiments would even be able to directly image those processes in strong gravity and directly confirm the presence of an event horizon.
41 - Heino Falcke 2009
The black hole at the Galactic Center, Sgr A*, is the prototype of a galactic nucleus at a very low level of activity. Its radio through submm-wave emission is known to come from a region close to the event horizon, however, the source of the emissio n is still under debate. A successful theory explaining the emission is based on a relativistic jet model scaled down from powerful quasars. We want to test the predictive power of this established jet model against newly available measurements of wavelength-dependent time lags and the size-wavelength structure in Sgr A*. Using all available closure amplitude VLBI data from different groups, we again derived the intrinsic wavelength-dependent size of Sgr A*. This allowed us to calculate the expected frequency-dependent time lags of radio flares, assuming a range of in- and outflow velocities. Moreover, we calculated the time lags expected in the previously published pressure-driven jet model. The predicted lags are then compared to radio monitoring observations at 22, 43, and 350 GHz. The combination of time lags and size measurements imply a mildly relativistic outflow with bulk outflow speeds of gamma*beta ~ 0.5-2. The newly measured time lags are reproduced well by the jet model without any major fine tuning. The results further strengthen the case for the cm-to-mm wave radio emission in Sgr A* as coming from a mildly relativistic jet-like outflow. The combination of radio time lag and VLBI closure amplitude measurements is a powerful new tool for assessing the flow speed and direction in Sgr A*. Future VLBI and time lag measurements over a range of wavelengths will reveal more information about Sgr A*, such as the existence of a jet nozzle, and measure the detailed velocity structure of a relativistic jet near its launching point for the first time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا