ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA and VLA measurements of frequency-dependent time lags in Sagittarius A*: evidence for a relativistic outflow

115   0   0.0 ( 0 )
 نشر من قبل Christiaan Brinkerink
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio and mm-wavelength observations of Sagittarius A* (Sgr A*), the radio source associated with the supermassive black hole at the center of our Galaxy, show that it behaves as a partially self-absorbed synchrotron-emitting source. The measured size of Sgr A* shows that the mm-wavelength emission comes from a small region and consists of the inner accretion flow and a possible collimated outflow. Existing observations of Sgr A* have revealed a time lag between light curves at 43 GHz and 22 GHz, which is consistent with a rapidly expanding plasma flow and supports the presence of a collimated outflow from the environment of an accreting black hole. Here we wish to measure simultaneous frequency-dependent time lags in the light curves of Sgr A* across a broad frequency range to constrain direction and speed of the radio-emitting plasma in the vicinity of the black hole. Light curves of Sgr A* were taken in May 2012 using ALMA at 100 GHz using the VLA at 48, 39, 37, 27, 25.5, and 19 GHz. As a result of elevation limits and the longitude difference between the stations, the usable overlap in the light curves is approximately four hours. Although Sgr A* was in a relatively quiet phase, the high sensitivity of ALMA and the VLA allowed us to detect and fit maxima of an observed minor flare where flux density varied by ~10%. The fitted times of flux density maxima at frequencies from 100 GHz to 19 GHz, as well as a cross-correlation analysis, reveal a simple frequency-dependent time lag relation where maxima at higher frequencies lead those at lower frequencies. Taking the observed size-frequency relation of Sgr A* into account, these time lags suggest a moderately relativistic (lower estimates: 0.5c for two-sided, 0.77c for one-sided) collimated outflow.



قيم البحث

اقرأ أيضاً

The compact radio source at the center of our Galaxy, Sagittarius A* (Sgr A*), is the subject of intensive study as it provides a close-up view of an accreting supermassive black hole. Sgr A* provides us with a prototype of a low-luminosity active ga lactic nucleus (LLAGN), but interstellar scattering and the resolution limits of our instruments have limited our understanding of the emission sites in its inner accretion flow. The temporal variability of Sgr A* can help us understand whether we see a plasma outflow or inflow in the region close to the black hole. In this work, we look at a comprehensive set of multi-epoch data recorded with the Karl G. Jansky Very Large Array (VLA) to understand the persistence of the time lag relations that have been found in previous radio observations of Sgr A*. We analyse 8 epochs of data, observed in Spring 2015, each of which has a frequency coverage from 18 to 48 GHz. We cross-correlate the calibrated light curves across twelve frequency subbands. We also generate synthetic data with the appropriate variability characteristics and use it to study the detectability of time lag relations in data with this sampling structure. We find that the variability amplitude increases with frequency. We see positive time lag slopes across all subbands in five out of eight epochs, with the largest slopes in the cases where a clear extremum in flux density is present. Three epochs show lag slopes close to zero. With the synthetic data analysis we show that these results are explained by a persistent lag relation of $sim$40 min/cm that covers the bulk of the variability, with at most 2 percent of the total flux density in an uncorrelated variability component. Together with the size-frequency relation and inclination constraints this indicates an outflow velocity with $gamma beta$ = 1.5, consistent with predictions of jet models for Sgr A*.
The emission from Sgr A*, the supermassive black hole in the Galactic Center, shows order of magnitude variability (flares) a few times a day that is particularly prominent in the near-infrared (NIR) and X-rays. We present a time-dependent model for these flares motivated by the hypothesis that dissipation of magnetic energy powers the flares. We show that episodic magnetic reconnection can occur near the last stable circular orbit in time-dependent magnetohydrodynamic simulations of black hole accretion - the timescales and energetics of these events are broadly consistent with the flares from Sgr A*. Motivated by these results, we present a spatially one-zone time-dependent model for the electron distribution function in flares, including energy loss due to synchrotron cooling and adiabatic expansion. Synchrotron emission from transiently accelerated particles can explain the NIR/X-ray lightcurves and spectra of a luminous flare observed 4 April 2007. A significant decrease in the magnetic field strength during the flare (coincident with the electron acceleration) is required to explain the simultaneity and symmetry of the simultaneous lightcurves. Our models predict that the NIR and X-ray spectral indices differ by 0.5 and that there is only modest variation in the spectral index during flares. We also explore implications of this model for longer wavelength (radio-submm) emission seemingly associated with X-ray and NIR flares; we argue that a few hour decrease in the submm emission is a more generic consequence of large-scale magnetic reconnection than delayed radio emission from adiabatic expansion.
We present the Suzaku results on a new candidate of a supernova remnant (SNR) in the Sagittarius C region. We detected diffuse X-rays of an elliptical shape (G359.41-0.12) and a chimney-like structure (the Chimney), both of which were fitted with a t hin thermal the model of kBT ~1 keV temperature. The absorption columns are same between these two structures, indicating that both are located at the same distance in the same line of sight. The narrow band image and one-dimensional profile of S XV Kalpha at 2.45 keV show that the Chimney is emanating from G359.41-0.12. Therefore, these two sources are physically connected with each other. The sum of the thermal energies of the Chimney and G359.41-0.12 is estimated to be 1.4x10^50 erg, typical for a galactic SNR. G359.41-0.12 is likely to be a new SNR candidate and the Chimney is an associated outflow.
Using the VLA, we recently detected a large number of protoplanetary disk (proplyd) candidates lying within a couple of light years of the massive black hole Sgr A*. The bow-shock appearance of proplyd candidates point toward the young massive stars located near Sgr A*. Similar to Orion proplyds, the strong UV radiation from the cluster of massive stars at the Galactic center is expected to photoevaporate and photoionize the circumstellar disks around young, low mass stars, thus allowing detection of the ionized outflows from the photoionized layer surrounding cool and dense gaseous disks. To confirm this picture, ALMA observations detect millimeter emission at 226 GHz from five proplyd candidates that had been detected at 44 and 34 GHz with the VLA. We present the derived disk masses for four sources as a function of the assumed dust temperature. The mass of protoplanetary disks from cool dust emission ranges between 0.03 -- 0.05 solar mass. These estimates are consistent with the disk masses found in star forming sites in the Galaxy. These measurements show the presence of on-going star formation with the implication that gas clouds can survive near Sgr A* and the relative importance of high vs low-mass star formation in the strong tidal and radiation fields of the Galactic center.
In recent years, continuum reverberation mapping involving high cadence UV/optical monitoring campaigns of nearby Active Galactic Nuclei has been used to infer the size of their accretion disks. One of the main results from these campaigns has been t hat in many cases the accretion disks appear too large, by a factor of 2 - 3, compared to standard models. Part of this may be due to diffuse continuum emission from the broad line region (BLR), which is indicated by excess lags around the Balmer jump. Standard cross correlation lag analysis techniques are usually used to just recover the peak or centroid lag and can not easily distinguish between reprocessing from the disk and BLR. However, frequency-resolved lag analysis, where the lag is determined at each Fourier frequency, has the potential to separate out reprocessing on different size scales. Here we present simulations to demonstrate the potential of this method and then apply a maximum likelihood approach to determine frequency-resolved lags in NGC 5548. We find that the lags in NGC 5548 generally decrease smoothly with increasing frequency, and are not easily described by accretion disk reprocessing alone. The standard cross correlation lags are consistent with lags at frequencies lower than 0.1 per day, indicating they are dominated from reprocessing at size scales greater than about 10 light days. A combination of a more distant reprocessor, consistent with the BLR, along with a standard-sized accretion disk is more consistent with the observed lags than a larger disk alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا