ترغب بنشر مسار تعليمي؟ اضغط هنا

Jet-lag in Sgr A*: What size and timing measurements tell us about the central black hole in the Milky Way

41   0   0.0 ( 0 )
 نشر من قبل Heino Falcke
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Heino Falcke




اسأل ChatGPT حول البحث

The black hole at the Galactic Center, Sgr A*, is the prototype of a galactic nucleus at a very low level of activity. Its radio through submm-wave emission is known to come from a region close to the event horizon, however, the source of the emission is still under debate. A successful theory explaining the emission is based on a relativistic jet model scaled down from powerful quasars. We want to test the predictive power of this established jet model against newly available measurements of wavelength-dependent time lags and the size-wavelength structure in Sgr A*. Using all available closure amplitude VLBI data from different groups, we again derived the intrinsic wavelength-dependent size of Sgr A*. This allowed us to calculate the expected frequency-dependent time lags of radio flares, assuming a range of in- and outflow velocities. Moreover, we calculated the time lags expected in the previously published pressure-driven jet model. The predicted lags are then compared to radio monitoring observations at 22, 43, and 350 GHz. The combination of time lags and size measurements imply a mildly relativistic outflow with bulk outflow speeds of gamma*beta ~ 0.5-2. The newly measured time lags are reproduced well by the jet model without any major fine tuning. The results further strengthen the case for the cm-to-mm wave radio emission in Sgr A* as coming from a mildly relativistic jet-like outflow. The combination of radio time lag and VLBI closure amplitude measurements is a powerful new tool for assessing the flow speed and direction in Sgr A*. Future VLBI and time lag measurements over a range of wavelengths will reveal more information about Sgr A*, such as the existence of a jet nozzle, and measure the detailed velocity structure of a relativistic jet near its launching point for the first time.

قيم البحث

اقرأ أيضاً

The Milky Way has been described as an anaemic spiral, but is its star formation rate (SFR) unusually low when compared to its peers? To answer this question, we define a sample of Milky Way Analogues (MWAs) based on stringent cuts on the best litera ture estimates of non-transient structural features for the Milky Way. This selection yields only 176 galaxies from the whole of the SDSS DR7 spectroscopic sample which have morphological classifications in GZ2, from which we infer SFRs from two separate indicators. The mean SFRs found are $log(rm{SFR}_{SED}/rm{M}_{odot}~rm{yr}^{-1})=0.53$ with a standard deviation of 0.23 dex from SED fits, and $log(rm{SFR}_{W4}/rm{M}_{odot}~rm{yr}^{-1})=0.68$ with a standard deviation of 0.41 dex from a mid-infrared calibration. The most recent estimate for the Milky Ways star formation rate of $log(rm{SFR}_{MW}/rm{M}_{odot}~rm{yr}^{-1})=0.22$ fits well within 2$sigma$ of these values, where $sigma$ is the standard deviation of each of the SFR indicator distributions. We infer that the Milky Way, while being a galaxy with a somewhat low SFR, is not unusual when compared to similar galaxies.
NGC 4753 is a bright (M_V approx -22.3) lenticular galaxy. It is a very interesting target to test different theories of formation of lenticular galaxies, due to its low-density environment and complex structure. We perform the first comprehensive st udy of NGC 4753 globular cluster system (GCS), using Gemini/GMOS and CTIO/MosaicII images. Our results indicate a rather poor GCS of approx 1000 members. Its azimuthal distribution follows the shape of the galaxy bulge. The GC colour distribution is peculiar, presenting an intermediate subpopulation in addition to blue and red ones. This intermediate subgroup can be explained by a single stellar population with an age of 1.5-3 Gyr and 0.5-1 Z_o. The GC specific frequency S_N = 1.3+/-0.15 is surprisingly low for a galaxy of its class. The GC luminosity function (GCLF) is also peculiar, with an excess of bright GCs compared to the expected gaussian distribution. The underlying galaxy body has significant substructure, with remnants of spiral arms, dust filaments, and isophote twisting. This, and the fact that NGC 4753 hosted two type Ia SNe, support the possibility that the intermediate GC subpopulation may have originated during a recent merger, 1-3 Gyr ago.
Planck data has not found the smoking gun of non-Gaussianity that would have necessitated consideration of inflationary models beyond the simplest canonical single field scenarios. This raises the important question of what these results do imply for more general models, and in particular, multi-field inflation. In this paper we revisit four ways in which two-field scenarios can behave differently from single field models; two-field slow-roll dynamics, curvaton-type behaviour, inflation ending on an inhomogeneous hypersurface and modulated reheating. We study the constraints that Planck data puts on these classes of behaviour, focusing on the latter two which have been least studied in the recent literature. We show that these latter classes are almost equivalent, and extend their previous analyses by accounting for arbitrary evolution of the isocurvature mode which, in particular, places important limits on the Gaussian curvature of the reheating hypersurface. In general, however, we find that Planck bispectrum results only constrain certain regions of parameter space, leading us to conclude that inflation sourced by more than one scalar field remains an important possibility.
In this paper we analyse tiebreak results from some tennis players in order to investigate whether we are able to identify some strategy in this crucial moment of the game. We compared the observed results with a binomial distribution considering tha t the probabilities of winning or losing a point are equal. Using a $chi^2$ test we found that, excepting some players, the greatest part of the results agrees with our hypothesis that there is no hidden strategy and the points in tiebreaks are merely aleatory.
214 - C.A.L. Bailer-Jones 2013
Gaia will provide parallaxes and proper motions with accuracy ranging from 10 to 1000 microarcsecond on up to one billion stars. Most of these will be disk stars: for an unreddened K giant at 6 kpc, it will measure the distance accurate to 15% and th e transverse velocity to an accuracy of about 1 km/s. Gaia will observe tracers of Galactic structure across the whole HR diagram, including Cepheids, RR Lyrae, white dwarfs, F dwarfs and HB stars. Onboard low resolution spectrophotometry will permit -- in addition to a Teff estimate -- dwarf/giant discrimination, metallicity measurement and extinction determination. For the first time, then, Gaia will provide us with a 3D spatial/properties map and at least a 2D velocity map of these tracers (RVs will be obtained too for brighter stars.) This will be a goldmine of information from which to learn about the origin and evolution of the Galactic disk. I briefly review the Gaia mission, and then show how the expected astrometric accuracies translate into distance and velocity accuracies and statistics. I examine the impact Gaia should have on a few scientific areas relevant to the Galactic disk. I discuss how a better determination of the spiral arm locations and pattern speed, plus a better reconstruction of the Suns orbit over the past billion years (from integration through the Gaia-measured gravitational potential) will allow us to assess the possible role of spiral arm crossings in ice ages and mass extinctions on the Earth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا