ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper investigates bilateral control of teleoperators with closed architecture and subjected to arbitrary bounded time-varying delay. A prominent challenge for bilateral control of such teleoperators lies in the closed architecture, especially i n the context not involving interaction force/torque measurement. This yields the long-standing situation that most bilateral control rigorously developed in the literature is hard to be justified as applied to teleoperators with closed architecture. With a new class of dynamic feedback, we propose kinematic and adaptive dynamic controllers for teleoperators with closed architecture, and we show that the proposed kinematic and dynamic controllers are robust with respect to arbitrary bounded time-varying delay. In addition, by exploiting the input-output properties of an inverted form of the dynamics of robot manipulators with closed architecture, we remove the assumption of uniform exponential stability of a linear time-varying system due to the adaptation to the gains of the inner controller in demonstrating stability of the presented adaptive dynamic control. The application of the proposed approach is illustrated by the experimental results using a Phantom Omni and a UR10 robot.
226 - Hanlei Wang 2021
This paper focuses on the construction of differential-cascaded structures for control of nonlinear robot manipulators subjected to disturbances and unavailability of partial information of the desired trajectory. The proposed differential-cascaded s tructures rely on infinite differential series to handle the robustness with respect to time-varying disturbances and the partial knowledge of the desired trajectories for nonlinear robot manipulators. The long-standing problem of reliable adaptation in the presence of sustaining disturbances is solved by the proposed forwardstepping control with forwardstepping adaptation, and stacked reference dynamics yielding adaptive differential-cascaded structures have been proposed to facilitate the forwardstepping adaptation to both the uncertainty of robot dynamics and that of the frequencies of disturbances. A distinctive point of the proposed differential-cascaded approach is that the reference dynamics for design and analysis involve high-order quantities, but via degree-reduction implementation of the reference dynamics, the control typically involves only the low-order quantities, thus facilitating its applications to control of most physical systems. Our result relies on neither the explicit estimation of the disturbances or derivative and second derivative of the desired position nor the solutions to linear/nonlinear regulator equations, and the employed essential element is a differential-cascaded structure governing robot dynamics.
318 - Hanlei Wang 2021
This paper investigates adaptive control of nonlinear robot manipulators with parametric uncertainty. Motivated by generating closed-loop robot dynamics with enhanced transmission capability of a reference torque and with connection to linear dynamic s, we develop a new adaptive approach by exploiting forwardstepping design and inertia invariance, yielding differential-cascaded closed-loop dynamics. With the proposed approach, we propose a new class of adaptive controllers for nonlinear robot manipulators. Our particular study concerning adaptive control of robots exhibits a design methodology towards establishing the connection between adaptive control of highly nonlinear uncertain systems (e.g., with a variable inertia matrix) and linear dynamics (typically with the same or increased order), which is a long-standing intractable issue in the literature.
This paper focuses on developing a new paradigm motivated by investigating the consensus problem of networked Lagrangian systems with time-varying delay and switching topologies. We present adaptive controllers with piecewise continuous or arbitrary times differentiable control torques for realizing consensus of Lagrangian systems, extending the results in the literature. This specific study motivates the formulation of a new paradigm referred to as forwardstepping, which is shown to be a systematic tool for solving various nonlinear control problems. One distinctive point associated with forwardstepping is that the order of the reference dynamics is typically specified to be equal to or higher than that of the original nonlinear system, and the reference dynamics and the nonlinear system are governed by a differential/dynamic-cascaded structure. The order invariance or increment of the specified reference dynamics with respect to the nonlinear system and their differential/dynamic-cascaded structure expands significantly the design freedom and thus facilitates the seeking of solutions to many nonlinear control problems which would otherwise often be intractable.
61 - Hanlei Wang 2018
This paper investigates manipulability of interactive Lagrangian systems with parametric uncertainty and communication/sensing constraints. Two standard examples are teleoperation with a master-slave system and teaching operation of robots. We here s ystematically formulate the concept of infinite manipulability for general dynamical systems, and investigate how such a unified motivation yields a design paradigm towards guaranteeing the infinite manipulability of interactive dynamical systems and in particular facilitates the design and analysis of nonlinear adaptive controllers for interactive Lagrangian systems. Specifically, based on a new class of dynamic feedback, we propose adaptive controllers that achieve both the infinite manipulability of the controlled Lagrangian systems and the robustness with respect to the communication/sensing constraints, mainly owing to the resultant dynamic-cascade framework. The proposed paradigm yields the desirable balance between network coupling requirements and controlled dynamics of human-system interaction. We also show that a special case of our main result resolves the longstanding nonlinear bilateral teleoperation problem with arbitrary unknown time-varying delay. Simulation results show the performance of the interactive robotic systems under the proposed adaptive controllers.
409 - Hanlei Wang 2017
This paper investigates the consensus problem of multiple uncertain Lagrangian systems. Due to the discontinuity resulted from the switching topology, achieving consensus in the context of uncertain Lagrangian systems is challenging. We propose a new adaptive controller based on dynamic feedback to resolve this problem and additionally propose a new analysis tool for rigorously demonstrating the stability and convergence of the networked systems. The new introduced analysis tool is referred to as uniform integral-L_p stability, which is motivated for addressing integral-input-output properties of linear time-varying systems. It is then shown that the consensus errors between the systems converge to zero so long as the union of the graphs contains a directed spanning tree. It is also shown that the proposed controller enjoys the robustness with respect to constant communication delays. The performance of the proposed adaptive controllers is shown by numerical simulations.
105 - Hanlei Wang , Yongchun Xie 2017
In this paper, we investigate the task-space consensus problem for multiple robotic systems with both the uncertain kinematics and dynamics and address two main issues, i.e., the separation of the kinematic and dynamic loops in the case of no task-sp ace velocity measurement and the quantification of the manipulability of the system. We propose an observer-based adaptive controller to achieve the manipulable consensus without relying on the measurement of task-space velocities, and also formalize the concept of manipulability to quantify the degree of adjustability of the consensus value. The proposed adaptive controller employs a new distributed observer that does not rely on the joint velocity and a new kinematic parameter adaptation law with a distributed adaptive kinematic regressor matrix that is driven by both the observation and consensus errors. In addition, it is shown that the proposed controller has the separation property, which yields an adaptive kinematic controller that is applicable to most industrial/commercial robots. The performance of the proposed observer-based adaptive schemes is shown by numerical simulations.
Modern applications of robotics typically involve a robot control system with an inner PI (proportional-integral) or PID (proportional-integral-derivative) control loop and an outer user-specified control loop. The existing outer loop controllers, ho wever, do not take into consideration the dynamic effects of robots and their effectiveness relies on the ad hoc assumption that the inner PI or PID control loop is fast enough, and other torque-based control algorithms cannot be implemented in robotics with closed architecture. This paper investigates the adaptive control of robotic systems with an inner/outer loop structure, taking into full account the effects of the dynamics and the system uncertainties, and both the task-space control and joint-space control are considered. We propose a dynamic modularity approach to resolve this issue, and a class of adaptive outer loop control schemes is proposed and their role is to dynamically generate the joint velocity (or position) command for the low-level joint servoing loop. Without relying on the ad hoc assumption that the joint servoing is fast enough or the modification of the low-level joint controller structure, we rigorously show that the proposed outer loop controllers can ensure the stability and convergence of the closed-loop system. We also propose the outer lo
123 - Hanlei Wang 2015
This paper investigates the visual servoing problem for robotic systems with uncertain kinematic, dynamic, and camera parameters. We first present the passivity properties associated with the overall kinematics of the system, and then propose two pas sivity-based adaptive control schemes to resolve the visual tracking problem. One scheme employs the adaptive inverse-Jacobian-like feedback, and the other employs the adaptive transpose Jacobian feedback. With the Lyapunov analysis approach, it is shown that under either of the proposed control schemes, the image-space tracking errors converge to zero without relying on the assumption of the invertibility of the estimated depth. Numerical simulations are performed to show the tracking performance of the proposed adaptive controllers.
95 - Hanlei Wang 2014
In this paper, we investigate the adaptive control problem for robot manipulators with both the uncertain kinematics and dynamics. We propose two adaptive control schemes to realize the objective of task-space trajectory tracking irrespective of the uncertain kinematics and dynamics. The proposed controllers have the desirable separation property, and we also show that the first adaptive controller with appropriate modifications can yield improved performance, without the expense of conservative gain choice. The performance of the proposed controllers is shown by numerical simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا