ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Control of Robot Manipulators With Uncertain Kinematics and Dynamics

167   0   0.0 ( 0 )
 نشر من قبل Hanlei Wang
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Hanlei Wang




اسأل ChatGPT حول البحث

In this paper, we investigate the adaptive control problem for robot manipulators with both the uncertain kinematics and dynamics. We propose two adaptive control schemes to realize the objective of task-space trajectory tracking irrespective of the uncertain kinematics and dynamics. The proposed controllers have the desirable separation property, and we also show that the first adaptive controller with appropriate modifications can yield improved performance, without the expense of conservative gain choice. The performance of the proposed controllers is shown by numerical simulations.



قيم البحث

اقرأ أيضاً

This work studies the design of safe control policies for large-scale non-linear systems operating in uncertain environments. In such a case, the robust control framework is a principled approach to safety that aims to maximize the worst-case perform ance of a system. However, the resulting optimization problem is generally intractable for non-linear systems with continuous states. To overcome this issue, we introduce two tractable methods that are based either on sampling or on a conservative approximation of the robust objective. The proposed approaches are applied to the problem of autonomous driving.
A novel adaptive control approach is proposed to solve the globally asymptotic state stabilization problem for uncertain pure-feedback nonlinear systems which can be transformed into the pseudo-affine form. The pseudo-affine pure-feedback nonlinear s ystem under consideration is with non-linearly parameterised uncertainties and possibly unknown control coefficients. Based on the parameter separation technique, a backstepping controller is designed by adopting the adaptive high gain idea. The rigorous stability analysis shows that the proposed controller could guarantee, for any initial system condition, boundedness of the closed-loop signals and globally asymptotic stabilization of the state. A numerical and a realistic examples are employed to demonstrate the effectiveness of the proposed control method.
The Underactuated Lightweight Tensegrity Robotic Assistive Spine (ULTRA Spine) project is an ongoing effort to develop a flexible, actuated backbone for quadruped robots. In this work, model-predictive control is used to track a trajectory in the rob ots state space, in simulation. The state trajectory used here corresponds to a bending motion of the spine, with translations and rotations of the moving vertebrae. Two different controllers are presented in this work: one that does not use a reference input but includes smoothing constrants, and a second one that uses a reference input without smoothing. For the smoothing controller, without reference inputs, the error converges to zero, while the simpler-to-tune controller with an input reference shows small errors but not complete convergence. It is expected that this controller will converge as it is improved further.
226 - Hanlei Wang 2021
This paper focuses on the construction of differential-cascaded structures for control of nonlinear robot manipulators subjected to disturbances and unavailability of partial information of the desired trajectory. The proposed differential-cascaded s tructures rely on infinite differential series to handle the robustness with respect to time-varying disturbances and the partial knowledge of the desired trajectories for nonlinear robot manipulators. The long-standing problem of reliable adaptation in the presence of sustaining disturbances is solved by the proposed forwardstepping control with forwardstepping adaptation, and stacked reference dynamics yielding adaptive differential-cascaded structures have been proposed to facilitate the forwardstepping adaptation to both the uncertainty of robot dynamics and that of the frequencies of disturbances. A distinctive point of the proposed differential-cascaded approach is that the reference dynamics for design and analysis involve high-order quantities, but via degree-reduction implementation of the reference dynamics, the control typically involves only the low-order quantities, thus facilitating its applications to control of most physical systems. Our result relies on neither the explicit estimation of the disturbances or derivative and second derivative of the desired position nor the solutions to linear/nonlinear regulator equations, and the employed essential element is a differential-cascaded structure governing robot dynamics.
318 - Hanlei Wang 2021
This paper investigates adaptive control of nonlinear robot manipulators with parametric uncertainty. Motivated by generating closed-loop robot dynamics with enhanced transmission capability of a reference torque and with connection to linear dynamic s, we develop a new adaptive approach by exploiting forwardstepping design and inertia invariance, yielding differential-cascaded closed-loop dynamics. With the proposed approach, we propose a new class of adaptive controllers for nonlinear robot manipulators. Our particular study concerning adaptive control of robots exhibits a design methodology towards establishing the connection between adaptive control of highly nonlinear uncertain systems (e.g., with a variable inertia matrix) and linear dynamics (typically with the same or increased order), which is a long-standing intractable issue in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا