ترغب بنشر مسار تعليمي؟ اضغط هنا

132 - Li Ge , Hakan E. Tureci 2015
In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that depending on the nature of their coupling, not only can the supermodes formed at the overlapping resonances of the coupled cavities have the lowest thresholds and lase first as previously suggested, leading to a manifestation of the typical Vernier effect now in an active system; these supermodes can also have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier effect. We attribute this effect to detuning-dependent Q-spoiling, and it can lead to an increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings of several previous work. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.
A single confined spin interacting with a solid-state environment has emerged as one of the fundamental paradigms of mesoscopic physics. In contrast to standard quantum optical systems, decoherence that stems from these interactions can in general no t be treated using the Born-Markov approximation at low temperatures. Here we study the non-equilibrium dynamics of a single-spin in a semiconductor quantum dot adjacent to a fermionic reservoir and show how the dynamics can be revealed in detail in an optical absorption experiment. We show that the highly asymmetrical optical absorption lineshape of the resulting Kondo exciton consists of three distinct frequency domains, corresponding to short, intermediate and long times after the initial excitation, which are in turn described by the three fixed points of the single-impurity Anderson Hamiltonian. The zero-temperature power-law singularity dominating the lineshape is linked to dynamically generated Kondo correlations in the photo-excited state. We show that this power-law singularity is tunable with gate voltage and magnetic field, and universal.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا