ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse Vernier Effects in Coupled Lasers

134   0   0.0 ( 0 )
 نشر من قبل Li Ge
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that depending on the nature of their coupling, not only can the supermodes formed at the overlapping resonances of the coupled cavities have the lowest thresholds and lase first as previously suggested, leading to a manifestation of the typical Vernier effect now in an active system; these supermodes can also have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier effect. We attribute this effect to detuning-dependent Q-spoiling, and it can lead to an increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings of several previous work. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.

قيم البحث

اقرأ أيضاً

Microcavity lasers based on erbium-doped lithium niobate on insulator (LNOI), which are key devices for LNOI integrated photonics, have attracted much attention recently. In this Letter, we report the realization of a C-band single-mode laser using V ernier effect in two coupled Erbium-doped LNOI microrings with different radii under the pump of a 980-nm continuous laser. The laser, operating stably over a large range of pumping power, has a pump threshold of ~200 {mu}W and a side-mode suppression ratio exceeding 26 dB. The high-performance LNOI single-mode laser will promote the development of lithium niobate integrated photonics.
114 - Meng Li , Nan Zhang , Kaiyang Wang 2015
Recently, on-chip single-mode laser emission has attracted considerable research attention due to its wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect o r inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism for single-mode operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the frequency detuning. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser.
The ability to control the chirality of physical devices is of great scientific and technological importance, from investigations of topologically protected edge states in condensed matter systems to wavefront engineering, isolation, and unidirection al communication. When dealing with large networks of oscillators, the control over the chirality of the bulk states becomes significantly more complicated and requires complex apparatus for generating asymmetric coupling or artificial gauge fields. Here we present a new approach for precise control over the chirality of a triangular array of hundreds of symmetrically-coupled lasers, by introducing a weak non-Hermitian complex potential. In the unperturbed network, lasing states with opposite chirality (staggered vortex and staggered anti-vortex) are equally probable. We show that by tuning the complex potential to an exceptional point, a nearly pure chiral lasing state is achieved. While our approach is applicable to any oscillators network, we demonstrate how the inherent non-linearity of the lasers effectively pulls the network to the exceptional point, making the chirality extremely resilient against noises and imperfections.
Detailed experimental and theoretical investigations on two coupled fiber lasers, each with many longitudinal modes, reveal that the behavior of the longitudinal modes depends on both the coupling strength as well as the detuning between them. For lo w to moderate coupling strength only longitudinal modes which are common for both lasers phase-lock while those that are not common gradually disappear. For larger coupling strengths, the longitudinal modes that are not common reappear and phase-lock. When the coupling strength approaches unity the coupled lasers behave as a single long cavity with correspondingly denser longitudinal modes. Finally, we show that the gradual increase in phase-locking as a function of the coupling strength results from competition between phase-locked and non phase-locked longitudinal modes.
We present a numerical study of the collective dynamics in a population of coupled excitable lasers with saturable absorber. At variance with previous studies where real-valued (lossy) coupling was considered, we focus here on the purely imaginary co upling (evanescent wave coupling). We show that evanescently coupled excitable lasers synchronize in a more efficient way compared to the lossy coupled ones. Furthermore we show that out-of-diagonal disorder-induced localization of excitability takes place for imaginary coupling too, but it can be frustrated by nonvanishing linewidth enhancement factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا