ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the structural, magnetic, and electronic properties of two new double-perovskites synthesized under high pressure; Pb2CaOsO6 and Pb2ZnOsO6. Upon cooling below 80 K, Pb2CaOsO6 simultaneously undergoes a metal--insulator transition and dev elops antiferromagnetic order. Pb2ZnOsO6, on the other hand, remains a paramagnetic metal down to 2 K. The key difference between the two compounds lies in their crystal structure. The Os atoms in Pb2ZnOsO6 are arranged on an approximately face-centred cubic lattice with strong antiferromagnetic nearest-neighbor exchange couplings. The geometrical frustration inherent to this lattice prevents magnetic order from forming down to the lowest temperatures. In contrast, the unit cell of Pb2CaOsO6 is heavily distorted up to at least 500 K, including antiferroelectric-like displacements of the Pb and O atoms despite metallic conductivity above 80 K. This distortion relieves the magnetic frustration, facilitating magnetic order which in turn drives the metal--insulator transition. Our results suggest that the phase transition in Pb2CaOsO6 is spin-driven, and could be a rare example of a Slater transition.
Room-temperature ferrimagnetism was discovered for the anti-site-disordered perovskite Ca2MnOsO6 with Tc = 305 K. Ca2MnOsO6 crystallizes into an orthorhombic structure with a space group of Pnma, in which Mn and Os share the oxygen-coordinated-octahe dral site at an equal ratio without a noticeable ordered arrangement. The material is electrically semiconducting with variable-range-hopping behavior. X-ray absorption spectroscopy confirmed the trivalent state of the Mn and the pentavalent state of the Os. X-ray magnetic circular dichroism spectroscopy reveals that the Mn and Os magnetic moments are aligned antiferromagnetically, thereby classifying the material as a ferrimagnet which is in accordance with band structure calculations. It is intriguing that the magnetic signal of the Os is very weak, and that the observed total magnetic moment is primarily due to the Mn. The Tc = 305 K is the second highest in the material category of so-called disordered ferromagnets such as CaRu1-xMnxO3, SrRu1-xCrxO3, and CaIr1-xMnxO3, and hence, may support the development of spintronic oxides with relaxed requirements concerning the anti-site disorder of the magnetic ions.
Polycrystalline Sr$_3$OsO$_6$, which is an ordered double-perovskite insulator, is synthesized via solid-state reaction under high-temperature and high-pressure conditions of 1200 $^circ$C and 6 GPa. The synthesis enables us to conduct a comparative study of the bulk form of Sr$_3$OsO$_6$ toward revealing the driving mechanism of 1000 K ferromagnetism, which has recently been discovered for epitaxially grown Sr$_3$OsO$_6$ films. Unlike the film, the bulk is dominated by antiferromagnetism rather than ferromagnetism. Therefore, robust ferromagnetic order appears only when Sr$_3$OsO$_6$ is under the influence of interfaces. A specific heat capacity of 39.6(9) 10$^{-3}$ J mol$^{-1}$ K$^{-2}$ is found at low temperatures ($<$17 K). This value is remarkably high, suggesting the presence of possible fermionic-like excitations at the magnetic ground state. Although the bulk and film forms of Sr$_3$OsO$_6$ share the same lattice basis and electrically insulating state, the magnetism is entirely different between them.
The non-stoichiometric double perovskite oxide La2Ni1.19Os0.81O6 was synthesized by solid state reaction and its crystal and magnetic structures were investigated by powder x-ray and neutron diffraction. La2Ni1.19Os0.81O6 crystallizes in the monoclin ic double perovskite structure (general formula A2BBO6) with space group P21/n, where the B site is fully occupied by Ni and the B site by 19 % Ni and 81 % Os atoms. Using x-ray absorption spectroscopy an Os4.5+ oxidation state was established, suggesting presence of about 50 % paramagnetic Os5+ (5d3, S = 3/2) and 50 % non-magnetic Os4+ (5d4, Jeff = 0) ions at the B sites. Magnetization and neutron diffraction measurements on La2Ni1.19Os0.81O6 provide evidence for a ferrimagnetic transition at 125 K. The analysis of the neutron data suggests a canted ferrimagnetic spin structure with collinear Ni2+ spin chains extending along the c axis but a non-collinear spin alignment within the ab plane. The magnetization curve of La2Ni1.19Os0.81O6 features a hysteresis with a very high coercive field, HC = 41 kOe, at T = 5 K, which is explained in terms of large magnetocrystalline anisotropy due to the presence of Os ions together with atomic disorder. Our results are encouraging to search for rare earth free hard magnets in the class of double perovskite oxides.
Polycrystalline samples of double perovskites Ba2BOsO6 (B = Sc, Y, In) were synthesized by solid state reactions. They adopt the cubic double perovskite structures (space group, Fm-3m) with ordered B and Os arrangements. Ba2BOsO6 (B = Sc, Y, In) show antiferromagnetic transitions at 93 K, 69 K, and 28 K, respectively. The Weiss-temperatures are -590 K for Ba2ScOsO6, -571 K for Ba2YOsO6, and -155 K for Ba2InOsO6. Sc3+ and Y3+ have the open-shell d0 electronic configuration, while In3+ has the closed-shell d10. This indicates that a d0 B-type cation induces stronger overall magnetic exchange interactions in comparison to a d10. Comparison of Ba2BOsO6 (B = Sc, Y, In) to their Sr and Ca analogues shows that the structural distortions weaken the overall magnetic exchange interactions.
The ferromagnetic semiconductor Ba2NiOsO6 (Tmag ~100 K) was synthesized at 6 GPa and 1500 {deg}C. It crystallizes into a double perovskite structure [Fm-3m; a = 8.0428(1) {AA}], where the Ni2+ and Os6+ ions are perfectly ordered at the perovskite B-s ite. We show that the spin-orbit coupling of Os6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (Tmag < 180 K), the spin-gapless semiconductor Mn2CoAl (Tmag ~720 K), and the ferromagnetic insulators EuO (Tmag ~70 K) and Bi3Cr3O11 (Tmag ~220 K). It is also qualitatively different from known ferrimagnetic insulator/semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of Ba2NiOsO6 should increase interest in the platinum group oxides, because this new class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا