ﻻ يوجد ملخص باللغة العربية
We report on the structural, magnetic, and electronic properties of two new double-perovskites synthesized under high pressure; Pb2CaOsO6 and Pb2ZnOsO6. Upon cooling below 80 K, Pb2CaOsO6 simultaneously undergoes a metal--insulator transition and develops antiferromagnetic order. Pb2ZnOsO6, on the other hand, remains a paramagnetic metal down to 2 K. The key difference between the two compounds lies in their crystal structure. The Os atoms in Pb2ZnOsO6 are arranged on an approximately face-centred cubic lattice with strong antiferromagnetic nearest-neighbor exchange couplings. The geometrical frustration inherent to this lattice prevents magnetic order from forming down to the lowest temperatures. In contrast, the unit cell of Pb2CaOsO6 is heavily distorted up to at least 500 K, including antiferroelectric-like displacements of the Pb and O atoms despite metallic conductivity above 80 K. This distortion relieves the magnetic frustration, facilitating magnetic order which in turn drives the metal--insulator transition. Our results suggest that the phase transition in Pb2CaOsO6 is spin-driven, and could be a rare example of a Slater transition.
The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion
On the basis of experimental thermoelectric power results and ab initio calculations, we propose that a metal-insulator transition takes place at high pressure (approximately 6 GPa) in MgV_2O_4.
By means of first principles schemes based on magnetically constrained density functional theory and on the band unfolding technique we study the effect of doping on the conducting behaviour of the Lifshitz magnetic insulator NaOsO3. Electron doping
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This
Metal-insulator transition (MIT) is one of the most conspicuous phenomena in correlated electron systems. However such transition has rarely been induced by an external magnetic field as the field scale is normally too small compared with the charge