ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental measurements clearly reveal the presence of bulk superconductivity in the CsPbxBi4-xTe6 (0.3=<x=<1.0) materials, i.e. the first member of the thermoelectric series of Cs[PbmBi3Te5+m], these materials have the layered orthorhombic structu re containing infinite anionic [PbBi3Te6]- slabs separated with Cs+ cations. Temperature dependences of electrical resistivity, magnetic susceptibility, and specific heat have consistently demonstrated that the superconducting transition in CsPb0.3Bi3.7Te6 occurs at Tc=3.1K, with a superconducting volume fraction close to 100% at 1.8 K. Structural study using aberration-corrected STEM/TEM reveals a rich variety of microstructural phenomena in correlation with the Pb-ordering and chemical inhomogeneity. The superconducting material CsPb0.3Bi3.7Te6 with the highest Tc shows a clear ordered structure with a modulation wave vector of q=a*/2+ c*/1.35 on the a-c plane. Our study evidently demonstrates that superconductivity deriving upon doping of narrow-gap semiconductor is a viable approach for exploration of novel superconductors.
84 - H.X. Yang , H.F. Tian , Y. Zhang 2009
The transmission electron microscopy observations of the charge ordering (CO) which governs the electronic polarization in LuFe2O4-x clearly show the presence of a remarkable phase separation at low temperatures. Two CO ground states are found to ado pt the charge modulations of Q1 = (1/3, 1/3, 0) and Q2 = (1/3 + y, 1/3 + y, 3/2), respectively. Our structural study demonstrates that the incommensurately Q2-modulated state is chiefly stable in samples with relatively lower oxygen contents. Data from theoretical simulations of the diffraction suggest that both Q1- and Q2-modulated phases have ferroelectric ordering. The effects of oxygen concentration on the phase separation and electric polarization in this layered system are discussed.
364 - K. Tahara , Z. Li , H.X. Yang 2009
We report ^{11}B NMR measurements in non-centrosymmetric superconductors Mg_{9.3}Ir_{19}B_{16.7} (T_c=5.8 K) and Mg_{10.5}Ir_{19}B_{17.1} (T_c=4.8 K). The spin lattice relaxation rate and the Knight shift indicate that the Cooper pairs are predominan tly in the spin-singlet state with an isotropic gap. However, Mg_{10.5}Ir_{19}B_{17.1} is found to have more defects and the spin susceptibility remains finite even in the zero-temperature limit. We interpret this result as that the defects enhance the spin-orbit coupling and bring about more spin-triplet component.
98 - C. Ma , H.X. Yang , H.F. Tian 2008
The structural properties of the SrFe2As2 and CaFe2As2 compounds have been extensively analyzed by transmission electron microscopy (TEM) from room temperature down to 20K. The experimental results demonstrate that the SrFe2As2 crystal, in consistenc e with previous x-ray data, has a tetragonal structure at room temperature and undergoes a tetragonal (T)-orthorhombic (O) phase transition at about 210K. Moreover, twinning lamella arising from T-O transition evidently appears in the orthorhombic phase. On the other hand, TEM observations of CaFe2As2 reveal the presence of a pseudo-periodic structural modulation with the periodicity of around 40nm at room temperature. This modulation is likely in connection with the local structural distortions within the Ca layer. In-situ cooling TEM observations of CaFe2As2 reveal the presence of complex domain structures in the low-temperature orthorhombic phase.
45 - C. Ma , L.J. Zeng , H.X. Yang 2008
The structural properties of the ROFeM (R=La, Nd; M=As, P) materials have been analyzed by means of electron diffraction, high-resolution transmission-electron microscopy (TEM) and in-situ cooling TEM observations. The experimental results demonstrat e that the layered ROFeM crystals often contain a variety of structural defects, such as stacking faults and small-angle boundaries. The in-situ TEM investigations reveal that, in association with the remarkable spin-density-wave (SDW) instability near 150 K, complex structural transitions can be clearly observed in both crystal symmetry and local microstructure features.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا