ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural features and tetragonal-orthorhombic phase transition in SrFe2As2 and CaFe2As2

143   0   0.0 ( 0 )
 نشر من قبل Chao Ma
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structural properties of the SrFe2As2 and CaFe2As2 compounds have been extensively analyzed by transmission electron microscopy (TEM) from room temperature down to 20K. The experimental results demonstrate that the SrFe2As2 crystal, in consistence with previous x-ray data, has a tetragonal structure at room temperature and undergoes a tetragonal (T)-orthorhombic (O) phase transition at about 210K. Moreover, twinning lamella arising from T-O transition evidently appears in the orthorhombic phase. On the other hand, TEM observations of CaFe2As2 reveal the presence of a pseudo-periodic structural modulation with the periodicity of around 40nm at room temperature. This modulation is likely in connection with the local structural distortions within the Ca layer. In-situ cooling TEM observations of CaFe2As2 reveal the presence of complex domain structures in the low-temperature orthorhombic phase.



قيم البحث

اقرأ أيضاً

We report the temperature dependent x-ray powder diffraction of the FeAs-based superconductors in the range between 300 K and 95 K. In the case of NdOFeAs we have detected the structural phase transition from the tetragonal phase, with P4/nmm space g roup, to the orthorhombic phase,with Cmma space group, over a broad temperature range from 150 K to 120 K, centered at T0 137K. This transition is reduced, by about 30K, by the internal chemical pressure going from LaOFeAs to NdOFeAs. On the contrary the superconducting critical temperature increases from 27K to 51 K going from LaOFeAs to NdOFeAs doped samples. The FeAs layers in all undoped 1111 and 122 systems suffer a tensile misfit strain. The tensile misfit strain is reduced in 1111 and in 122 samples and at optimum doping the misfit strain is close to zero. This result shows that the normal striped orthorhombic Cmma phase competes with the superconducting tetragonal phase. In the orthorhombic clusters the charges can move only along the stripes in the b direction and are localized by the magnetic interaction.
126 - J.-Q. Yan , A. Kreyssig , S. Nandi 2008
Plate-like single crystals of SrFe2As2 as large as 3x3x0.5 mm3 have been grown out of Sn flux. The SrFe2As2 single crystals show a structural phase transition from a high temperature tetragonal phase to a low temperature orthorhombic phase at To = 19 8 K, and do not show any sign of superconductivity down to 1.8 K. The structural transition is accompanied by an anomaly in the electrical resistivity, Hall resistivity, specific heat, and the anisotropic magnetic susceptibility. In an intermediate temperature range from 198 K to 160 K, single crystal X-ray diffraction suggests a coexistence of the high-temperature tetragonal and the low-temperature orthorhombic phases.
268 - R. S. Dhaka , Rui Jiang , S. Ran 2014
We use angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic structure of CaFe$_2$As$_2$ in previously unexplored collapsed tetragonal (CT) phase. This unusual phase of the iron ars enic high temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the post growth, thermal treatment of the single crystals, we were able to stabilize the CT phase at ambient-pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks below the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase along with apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.
In this work we have investigated the orthorhombic to tetragonal phase transition in the Ba2Cu3O4Cl2 compound. This transition was observed by X-ray powder diffractometry carried out in samples heat treated between 700 and 750OC and also in samples w ith Ba2ZnCu2O4Cl2 composition. Results of X-ray diffractograms simulation confirm the phase transition. dc-Magnetization measurements performed in SQUID showed the existence of diamagnetism signal. The results suggest the existence of localized superconductivity and can explain the different magnetic properties reported in literature for the Ba2Cu3O4Cl2 compound.
The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations i n the non-superconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is non-magnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا