ترغب بنشر مسار تعليمي؟ اضغط هنا

We have studied Josephson junctions with barriers prepared from the Heusler compound Cu$_2$MnAl. In the as-prepared state the Cu$_2$MnAl layers are non ferromagnetic and the critical Josephson current density $j_{c}$ decreases exponentially with the thickness of the Heusler layers $d_{F}$. On annealing the junctions at 240degree C the Heusler layers develop ferromagnetic order and we observe a dependence $j_{c}(d_{F}$) with $j_{c}$ strongly enhanced and weakly thickness dependent in the thickness range 7.0 nm < $d_{F}$ < 10.6 nm. We attribute this feature to a triplet component in the superconducting pairing function generated by the specific magnetization profile inside thin Cu$_2$MnAl layers.
Josephson tunnel junctions with the strong ferromagnetic alloy $Fe_{0.75}Co_{0.25}$ as the barrier material were studied. The junctions were prepared with high quality down to a thickness range of a few monolayers of Fe-Co. An oscillation length of $ xi_{F2}approx 0.79:{rm {nm}}$ between 0 and $pi$-Josephson phase coupling and a very short decay length $xi_{F1}approx 0.22:{rm {nm}}$ for the amplitude of the superconducting pair wave function in the Fe-Co layer were determined. The rapid damping of the pair wave function inside the Fe-Co layer is caused by the strong ferromagnetic exchange field and additional magnetic pair breaking scattering. Josephson junctions with Fe-Co barriers show a significantly increased tendency towards magnetic remanence and flux trapping for larger thicknesses $d_{F}$.
245 - P. Szary , O. Petracic , H. Zabel 2009
The magnetization reversal and spin structure in circular Co/insulator/Ni80Fe20 trilayer dots has been investigated numerically. The effect of dipolar coupling between a soft ferromagnetic Permalloy (Py=Ni80Fe20) layer and a hard ferromagnetic Cobalt layer inside one stack is studied. We find either a stabilization or even a triggering of the vortex state in the Py layer due to the magnetic stray field of the Co layer, while the Co magnetization remains in a single-domain state. Furthermore, for thin Py layers a 360 deg-domain wall is observed. We construct a phase diagram, where regions of vortex stabilization, triggering, and occurrence of a 360 deg domain wall are marked.
89 - O. Petracic , P. Szary , H. Zabel 2008
The domain wall nucleation and motion processes in Permalloy nanowires with a thickness gradient along the nanowire axis have been studied. Nanowires with widths, w = 250 nm to 3 um and a base thickness of t = 10 nm were fabricated by electron-beam l ithography. The magnetization hysteresis loops measured on individual nanowires are compared to corresponding nanowires without a thickness gradient. The Hc vs. t/w curves of wires with and without a thickness gradient are discussed and compared to micromagnetic simulations. We find a metastability regime at values of w, where a transformation from transverse to vortex domain wall type is expected.
A combination of experimental techniques, e.g. vector-MOKE magnetometry, Kerr microscopy and polarized neutron reflectometry, was applied to study the field induced evolution of the magnetization distribution over a periodic pattern of alternating ex change bias stripes. The lateral structure is imprinted into a continuous ferromagnetic/antiferromagnetic exchange-bias bi-layer via laterally selective exposure to He-ion irradiation in an applied field. This creates an alternating frozen-in interfacial exchange bias field competing with the external field in the course of the re-magnetization. It was found that in a magnetic field applied at an angle with respect to the exchange bias axis parallel to the stripes the re-magnetization process proceeds via a variety of different stages. They include coherent rotation of magnetization towards the exchange bias axis, precipitation of small random (ripple) domains, formation of a stripe-like alternation of the magnetization, and development of a state in which the magnetization forms large hyper-domains comprising a number of stripes. Each of those magnetic states is quantitatively characterized via the comprehensive analysis of data on specular and off-specular polarized neutron reflectivity. The results are discussed within a phenomenological model containing a few parameters which can readily be controlled by designing systems with a desired configuration of magnetic moments of micro- and nano-elements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا