ﻻ يوجد ملخص باللغة العربية
The magnetization reversal and spin structure in circular Co/insulator/Ni80Fe20 trilayer dots has been investigated numerically. The effect of dipolar coupling between a soft ferromagnetic Permalloy (Py=Ni80Fe20) layer and a hard ferromagnetic Cobalt layer inside one stack is studied. We find either a stabilization or even a triggering of the vortex state in the Py layer due to the magnetic stray field of the Co layer, while the Co magnetization remains in a single-domain state. Furthermore, for thin Py layers a 360 deg-domain wall is observed. We construct a phase diagram, where regions of vortex stabilization, triggering, and occurrence of a 360 deg domain wall are marked.
We report on detailed broadband ferromagnetic resonance measurements of azimuthal and radial spin wave excitations in circular Permalloy dots in the vortex ground state. Dots with aspect ratio (Beta =height over radius) varied from 0.03 to 0.1 were e
Based on micromagnetic simulations, we report on a novel helical magnetic structure in a soft magnetic film that is sandwiched between and exchange-coupled to two hard magnetic layers. Confined between antiparallel hard magnetic moments, a helix with
The existence of nonlinear objects of the vortex type in two-dimensional magnetic systems presents itself as one of the most promising candidates for the construction of nanodevices, useful for storing data, and for the construction of reading and wr
Experimental and theoretical studies of manganese deposition on graphene/Ni(111) shows that a thin ferromagnetic Ni3Mn layer, which is protected by the graphene overlayer, is formed upon Mn intercalation. The electronic bands of graphene are affected
Using the ultra low damping NiMnSb half-Heusler alloy patterned into vortex-state magnetic nano-dots, we demonstrate a new concept of non-volatile memory controlled by the frequency. A perpendicular bias magnetic field is used to split the frequency