ترغب بنشر مسار تعليمي؟ اضغط هنا

91 - H. L. Wang , C. H. Du , Y. Pu 2013
Epitaxial Y3Fe5O12 thin films have been deposited by off-axis sputtering, which exhibit excellent crystalline quality, enabling observation of large spin pumping signals in Pt/Y3Fe5O12 and W/Y3Fe5O12 bilayers driven by cavity ferromagnetic resonance. The inverse spin Hall voltages reach 2.10 mV and -5.26 mV in 5-mm long Pt/Y3Fe5O12 and W/Y3Fe5O12 bilayers, respectively, excited by a radio-frequency magnetic field of 0.3 Oe. From the ferromagnetic resonance linewidth broadening, the interfacial spin mixing conductance of 4.56E14 {Omega}-1m-2 and 2.30E14 {Omega}-1m-2 are obtained for Pt/Y3Fe5O12 and W/Y3Fe5O12 bilayers, respectively.
86 - Y. Pu , H. L. Wang , C. H. Du 2013
Ferromagnetic resonance (FMR) driven spin pumping is an emerging technique for injection of a pure spin current from a ferromagnet (FM) into a non-magnetic (NM) material without an accompanying charge current. It is widely believed that this pumping proceeds exclusively via a short-range exchange interaction at the FM/NM interface. Here we report robust, long-range spin pumping from the ferrimagnetic double perovskite Sr2FeMoO6 (SFMO) into Pt across an insulating barrier up to 200 nm thick, and systematically rule out all known spurious effects. This result demonstrates dynamic spin injection over a distance far beyond the coupling range of the exchange interaction, exposing the need to consider other coupling mechanisms. The characteristic length scale for magnetic textures in Sr2FeMoO6 is approximately 150 nm, resulting from structural antiphase boundaries, thus raising the possibility that magnetic dipole coupling underlies the observed long range spin transfer. This discovery reveals a route to dynamic angular momentum transfer between a FM and a NM in the absence of mediation by itinerant electrons and promises new spin-functional devices employing long-range spin pumping.
Coupling between axial and torsional degrees of freedom often modifies the conformation and expression of natural and synthetic filamentous aggregates. Recent studies on chiral single-walled carbon nanotubes and B-DNA reveal a reversal in the sign of the twist-stretch coupling at large strains. The similarity in the response in these two distinct supramolecular assemblies and at high strains suggests a fundamental, chirality dependent non-linear elastic behaviour. Here, we seek the link between the microscopic origin of the non-linearities and the effective twist-stretch coupling using energy based theoretical frameworks and model simulations. Our analysis reveals a sensitive interplay between the deformation energetics and the sign of the coupling, highlighting robust design principles that determine both the sign and extent of these couplings. These design principles have been already exploited by Nature to dynamically engineer such couplings, and have broad implications in mechanically coupled actuation, propulsion and transport in biology and technology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا