ﻻ يوجد ملخص باللغة العربية
Ferromagnetic resonance (FMR) driven spin pumping is an emerging technique for injection of a pure spin current from a ferromagnet (FM) into a non-magnetic (NM) material without an accompanying charge current. It is widely believed that this pumping proceeds exclusively via a short-range exchange interaction at the FM/NM interface. Here we report robust, long-range spin pumping from the ferrimagnetic double perovskite Sr2FeMoO6 (SFMO) into Pt across an insulating barrier up to 200 nm thick, and systematically rule out all known spurious effects. This result demonstrates dynamic spin injection over a distance far beyond the coupling range of the exchange interaction, exposing the need to consider other coupling mechanisms. The characteristic length scale for magnetic textures in Sr2FeMoO6 is approximately 150 nm, resulting from structural antiphase boundaries, thus raising the possibility that magnetic dipole coupling underlies the observed long range spin transfer. This discovery reveals a route to dynamic angular momentum transfer between a FM and a NM in the absence of mediation by itinerant electrons and promises new spin-functional devices employing long-range spin pumping.
The use of the spin Hall effect and its inverse to electrically detect and manipulate dynamic spin currents generated via ferromagnetic resonance (FMR) driven spin pumping has enabled the investigation of these dynamically injected currents across a
Topological spintronics aims to exploit the spin-momentum locking in the helical surface states of topological insulators for spin-orbit torque devices. We address a fundamental question that still remains unresolved in this context: does the topolog
The longitudinal spin Seebeck effect refers to the generation of a spin current when heat flows across a normal metal/magnetic insulator interface. Until recently, most explanations of the spin Seebeck effect use the interfacial temperature differenc
Ultracold atom magnetic field microscopy enables the probing of current flow patterns in planar structures with unprecedented sensitivity. In polycrystalline metal (gold) films we observe long-range correlations forming organized patterns oriented at
The discovery of skyrmions has sparked tremendous interests about topologically nontrivial spin textures in recent times. The signature of noncoplanar nature of magnetic moments can be observed as topological Hall effect (THE) in electrical measureme