ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a novel analogue for finite exchangeable sequences of the de Finetti, Hewitt and Savage theorem and investigate its implications for multi-marginal optimal transport (MMOT) and Bayesian statistics. If $(Z_1,...,Z_N)$ is a finitely exchange able sequence of $N$ random variables taking values in some Polish space $X$, we show that the law $mu_k$ of the first $k$ components has a representation of the form $mu_k=int_{{mathcal P}_{frac{1}{N}}(X)} F_{N,k}(lambda) , mbox{d} alpha(lambda)$ for some probability measure $alpha$ on the set of $1/N$-quantized probability measures on $X$ and certain universal polynomials $F_{N,k}$. The latter consist of a leading term $N^{k-1}! /{small prod_{j=1}^{k-1}(N! -! j), lambda^{otimes k}}$ and a finite, exponentially decaying series of correlated corrections of order $N^{-j}$ ($j=1,...,k$). The $F_{N,k}(lambda)$ are precisely the extremal such laws, expressed via an explicit polynomial formula in terms of their one-point marginals $lambda$. Applications include novel approximations of MMOT via polynomial convexification and the identification of the remainder which is estimated in the celebrated error bound of Diaconis-Freedman between finite and infinite exchangeable laws.
In this paper, we first revisit the Koenker and Bassett variational approach to (univariate) quantile regression, emphasizing its link with latent factor representations and correlation maximization problems. We then review the multivariate extension due to Carlier et al. (2016, 2017) which relates vector quantile regression to an optimal transport problem with mean independence constraints. We introduce an entropic regularization of this problem, implement a gradient descent numerical method and illustrate its feasibility on univariate and bivariate examples.
In this paper, we investigate properties of entropy-penalized Wasserstein barycenters introduced by Bigot, Cazelles and Papadakis (2019) as a regularization of Wasserstein barycenters first presented by Agueh and Carlier (2011). After characterizing these barycenters in terms of a system of Monge-Amp`ere equations, we prove some global moment and Sobolev bounds as well as higher regularity properties. We finally establish a central limit theorem for entropic-Wasserstein barycenters.
In this paper, we describe a novel iterative procedure called SISTA to learn the underlying cost in optimal transport problems. SISTA is a hybrid between two classical methods, coordinate descent (S-inkhorn) and proximal gradient descent (ISTA). It a lternates between a phase of exact minimization over the transport potentials and a phase of proximal gradient descent over the parameters of the transport cost. We prove that this method converges linearly, and we illustrate on simulated examples that it is significantly faster than both coordinate descent and ISTA. We apply it to estimating a model of migration, which predicts the flow of migrants using country-specific characteristics and pairwise measures of dissimilarity between countries. This application demonstrates the effectiveness of machine learning in quantitative social sciences.
We prove an existence result for the principal-agent problem with adverse selection under general assumptions on preferences and allocation spaces. Instead of assuming that the allocation space is finite-dimensional or compact, we consider a more gen eral coercivity condition which takes into account the principals cost and the agents preferences. Our existence proof is simple and flexible enough to adapt to partial participation models as well as to the case of type-dependent budget constraints.
We develop an elementary and self-contained differential approach, in an $L^infty$ setting, for well-posedness (existence, uniqueness and smooth dependence with respect to the data) for the multi-marginal Schr{o}dinger system which arises in the entropic regularization of optimal transport problems.
We propose a new viewpoint on variational mean-field games with diffusion and quadratic Hamiltonian. We show the equivalence of such mean-field games with a relative entropy minimization at the level of probabilities on curves. We also address the ti me-discretization of such problems, establish $Gamma$-convergence results as the time step vanishes and propose an efficient algorithm relying on this entropic interpretation as well as on the Sinkhorn scaling algorithm.
Starting from Breniers relaxed formulation of the incompressible Euler equation in terms of geodesics in the group of measure-preserving diffeomorphisms, we propose a numerical method based on Sinkhorns algorithm for the entropic regularization of op timal transport. We also make a detailed comparison of this entropic regularization with the so-called Bredinger entropic interpolation problem. Numerical results in dimension one and two illustrate the feasibility of the method.
We study the JKO scheme for the total variation, characterize the optimizers, prove some of their qualitative properties (in particular a form of maximum principle and in some cases, a minimum principle as well). Finally, we establish a convergence r esult as the time step goes to zero to a solution of a fourth-order nonlinear evolution equation, under the additional assumption that the density remains bounded away from zero. This lower bound is shown in dimension one and in the radially symmetric case.
We consider a class of games with continuum of players where equilibria can be obtained by the minimization of a certain functional related to optimal transport as emphasized in [7]. We then use the powerful entropic regularization technique to appro ximate the problem and solve it numerically in various cases. We also consider the extension to some models with several populations of players.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا