ﻻ يوجد ملخص باللغة العربية
We present a novel analogue for finite exchangeable sequences of the de Finetti, Hewitt and Savage theorem and investigate its implications for multi-marginal optimal transport (MMOT) and Bayesian statistics. If $(Z_1,...,Z_N)$ is a finitely exchangeable sequence of $N$ random variables taking values in some Polish space $X$, we show that the law $mu_k$ of the first $k$ components has a representation of the form $mu_k=int_{{mathcal P}_{frac{1}{N}}(X)} F_{N,k}(lambda) , mbox{d} alpha(lambda)$ for some probability measure $alpha$ on the set of $1/N$-quantized probability measures on $X$ and certain universal polynomials $F_{N,k}$. The latter consist of a leading term $N^{k-1}! /{small prod_{j=1}^{k-1}(N! -! j), lambda^{otimes k}}$ and a finite, exponentially decaying series of correlated corrections of order $N^{-j}$ ($j=1,...,k$). The $F_{N,k}(lambda)$ are precisely the extremal such laws, expressed via an explicit polynomial formula in terms of their one-point marginals $lambda$. Applications include novel approximations of MMOT via polynomial convexification and the identification of the remainder which is estimated in the celebrated error bound of Diaconis-Freedman between finite and infinite exchangeable laws.
In 1931 de Finetti proved what is known as his Dutch Book Theorem. This result implies that the finite additivity {it axiom} for the probability of the disjunction of two incompatible events becomes a {it consequence} of de Finettis logic-operational
A finite form of de Finettis representation theorem is established using elementary information-theoretic tools: The distribution of the first $k$ random variables in an exchangeable binary vector of length $ngeq k$ is close to a mixture of product d
We consider ensembles of real symmetric band matrices with entries drawn from an infinite sequence of exchangeable random variables, as far as the symmetry of the matrices permits. In general the entries of the upper triangular parts of these matrice
According to the quantum de Finetti theorem, if the state of an N-partite system is invariant under permutations of the subsystems then it can be approximated by a state where almost all subsystems are identical copies of each other, provided N is su
We study Nash equilibria for a sequence of symmetric $N$-player stochastic games of finite-fuel capacity expansion with singular controls and their mean-field game (MFG) counterpart. We construct a solution of the MFG via a simple iterative scheme th