ترغب بنشر مسار تعليمي؟ اضغط هنا

Complementary to existing applications of Lagrangian descriptors as an exploratory method, we use Lagrangian descriptors to find invariant manifolds in a system where some invariant structures have already been identified. In this case we use the par ametrisation of a periodic orbit to construct a Lagrangian descriptor that will be locally minimised on its invariant manifolds. The procedure is applicable (but not limited) to systems with highly unstable periodic orbits, such as the isokinetic Chesnavich CH4+ model subject to a Hamiltonian isokinetic theromostat. Aside from its low computational requirements, the method enables us to study the invariant structures responsible for roaming in the isokinetic Chesnavich CH4+ model.
We extend the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), a semiclassical method for computing real-time correlation functions, to electronically nonadiabatic systems using the Meyer-Miller-Stock-Thoss (MMST) Hamiltonian to treat electronic and nuclear degrees of freedom (dofs) within a consistent dynamic framework. We introduce an efficient symplectic integration scheme, the MInt algorithm, for numerical time-evolution of the nuclear and electronic phase space variables as well as the Monodromy matrix, under the non-separable MMST Hamiltonian. We then calculate the probability of transmission through a curve-crossing in model two-level systems and show that in the quantum limit MQC-IVR is in good agreement with the exact quantum results, whereas in the classical limit the method yields results in keeping with mean-field approaches like the Linearized Semiclassical IVR. Finally, exploiting the ability of MQC-IVR to quantize different dofs to different extents, we present a detailed study of the extents to which quantizing the nuclear and electronic dofs improves numerical convergence properties without significant loss of accuracy.
In this paper we analyze a two degree of freedom Hamiltonian system constructed from two planar Morse potentials. The resulting potential energy surface has two potential wells surrounded by an unbounded flat region containing no critical points. In addition, the model has an index one saddle between the potential wells. We study the dynamical mechanisms underlying transport between the two potential wells, with emphasis on the role of the flat region surrounding the wells. The model allows us to probe many of the features of the roaming mechanism whose reaction dynamics are of current interest in the chemistry community.
A reduced two dimensional model is used to study Ketene isomerization reaction. In light of recent results by Ulusoy textit{et al.} [J. Phys. Chem. A {bf 117}, 7553 (2013)], the present work focuses on the generalization of the roaming mechanism to t he Ketene isomerization reaction by applying our phase space approach previously used to elucidate the roaming phenomenon in ion-molecule reactions. Roaming is again found be associated with the trapping of trajectories in a phase space region between two dividing surfaces; trajectories are classified as reactive or nonreactive, and are further naturally classified as direct or non-direct (roaming). The latter long-lived trajectories are trapped in the region of non-linear mechanical resonances, which in turn define alternative reaction pathways in phase space. It is demonstrated that resonances associated with periodic orbits provide a dynamical explanation of the quantum mechanical resonances found in the isomerization rate constant calculations by Gezelter and Miller [J. Chem. Phys. {bf 103}, 7868-7876 (1995)]. Evidence of the trapping of trajectories by `sticky resonant periodic orbits is provided by plotting Poincare surfaces of section, and a gap time analysis is carried out in order to investigate the statistical assumption inherent in transition state theory for Ketene isomerization.
We study reaction dynamics on a model potential energy surface exhibiting post-transition state bifurcation in the vicinity of a valley ridge inflection point. We compute fractional yields of products reached after the VRI region is traversed, both w ith and without dissipation. It is found that apparently minor variations in the potential lead to significant changes in the reaction dynamics. Moreover, when dissipative effects are incorporated, the product ratio depends in a complicated and highly non-monotonic fashion on the dissipation parameter. Dynamics in the vicinity of the VRI point itself play essentially no role in determining the product ratio, except in the highly dissipative regime.
We provide a dynamical interpretation of the recently identified `roaming mechanism for molecular dissociation reactions in terms of geometrical structures in phase space. These are NHIMs (Normally Hyperbolic Invariant Manifolds) and their stable/uns table manifolds that define transition states for ion-molecule association or dissociation reactions. The associated dividing surfaces rigorously define a roaming region of phase space, in which both reactive and nonreactive trajectories can be trapped for arbitrarily long times.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا