ﻻ يوجد ملخص باللغة العربية
In this paper we analyze a two degree of freedom Hamiltonian system constructed from two planar Morse potentials. The resulting potential energy surface has two potential wells surrounded by an unbounded flat region containing no critical points. In addition, the model has an index one saddle between the potential wells. We study the dynamical mechanisms underlying transport between the two potential wells, with emphasis on the role of the flat region surrounding the wells. The model allows us to probe many of the features of the roaming mechanism whose reaction dynamics are of current interest in the chemistry community.
A model Hamiltonian for the reaction CH$_4^+ rightarrow$ CH$_3^+$ + H, parametrized to exhibit either early or late inner transition states, is employed to investigate the dynamical characteristics of the roaming mechanism. Tight/loose transition sta
A reduced two dimensional model is used to study Ketene isomerization reaction. In light of recent results by Ulusoy textit{et al.} [J. Phys. Chem. A {bf 117}, 7553 (2013)], the present work focuses on the generalization of the roaming mechanism to t
We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori it is possible to define phase space dividing surfaces th
We provide a dynamical interpretation of the recently identified `roaming mechanism for molecular dissociation reactions in terms of geometrical structures in phase space. These are NHIMs (Normally Hyperbolic Invariant Manifolds) and their stable/uns
The transition states and dividing surfaces used to find rate constants for bimolecular reactions are shown to undergo qualitative changes, known as Morse bifurcations, and to exist for a large range of energies, not just immediately above the critic