ترغب بنشر مسار تعليمي؟ اضغط هنا

A $k$-spanner of a graph $G$ is a sparse subgraph that preserves its shortest path distances up to a multiplicative stretch factor of $k$, and a $k$-emulator is similar but not required to be a subgraph of $G$. A classic theorem by Thorup and Zwick [ JACM 05] shows that, despite the extra flexibility available to emulators, the size/stretch tradeoffs for spanners and emulators are equivalent. Our main result is that this equivalence in tradeoffs no longer holds in the commonly-studied setting of graphs with vertex failures. That is: we introduce a natural definition of vertex fault-tolerant emulators, and then we show a three-way tradeoff between size, stretch, and fault-tolerance for these emulators that polynomially surpasses the tradeoff known to be optimal for spanners. We complement our emulator upper bound with a lower bound construction that is essentially tight (within $log n$ factors of the upper bound) when the stretch is $2k-1$ and $k$ is either a fixed odd integer or $2$. We also show constructions of fault-tolerant emulators with additive error, demonstrating that these also enjoy significantly improved tradeoffs over those available for fault-tolerant additive spanners.
An emph{additive $+beta$ spanner} of a graph $G$ is a subgraph which preserves distances up to an additive $+beta$ error. Additive spanners are well-studied in unweighted graphs but have only recently received attention in weighted graphs [Elkin et a l. 2019 and 2020, Ahmed et al. 2020]. This paper makes two new contributions to the theory of weighted additive spanners. For weighted graphs, [Ahmed et al. 2020] provided constructions of sparse spanners with emph{global} error $beta = cW$, where $W$ is the maximum edge weight in $G$ and $c$ is constant. We improve these to emph{local} error by giving spanners with additive error $+cW(s,t)$ for each vertex pair $(s,t)$, where $W(s, t)$ is the maximum edge weight along the shortest $s$--$t$ path in $G$. These include pairwise $+(2+eps)W(cdot,cdot)$ and $+(6+eps) W(cdot, cdot)$ spanners over vertex pairs $Pc subseteq V times V$ on $O_{eps}(n|Pc|^{1/3})$ and $O_{eps}(n|Pc|^{1/4})$ edges for all $eps > 0$, which extend previously known unweighted results up to $eps$ dependence, as well as an all-pairs $+4W(cdot,cdot)$ spanner on $widetilde{O}(n^{7/5})$ edges. Besides sparsity, another natural way to measure the quality of a spanner in weighted graphs is by its emph{lightness}, defined as the total edge weight of the spanner divided by the weight of an MST of $G$. We provide a $+eps W(cdot,cdot)$ spanner with $O_{eps}(n)$ lightness, and a $+(4+eps) W(cdot,cdot)$ spanner with $O_{eps}(n^{2/3})$ lightness. These are the first known additive spanners with nontrivial lightness guarantees. All of the above spanners can be constructed in polynomial time.
Recent work has established that, for every positive integer $k$, every $n$-node graph has a $(2k-1)$-spanner on $O(f^{1-1/k} n^{1+1/k})$ edges that is resilient to $f$ edge or vertex faults. For vertex faults, this bound is tight. However, the case of edge faults is not as well understood: the best known lower bound for general $k$ is $Omega(f^{frac12 - frac{1}{2k}} n^{1+1/k} +fn)$. Our main result is to nearly close this gap with an improved upper bound, thus separating the cases of edge and vertex faults. For odd $k$, our new upper bound is $O_k(f^{frac12 - frac{1}{2k}} n^{1+1/k} + fn)$, which is tight up to hidden $poly(k)$ factors. For even $k$, our new upper bound is $O_k(f^{1/2} n^{1+1/k} +fn)$, which leaves a gap of $poly(k) f^{1/(2k)}$. Our proof is an analysis of the fault-tolerant greedy algorithm, which requires exponential time, but we also show that there is a polynomial-time algorithm which creates edge fault tolerant spanners that are larger only by factors of $k$.
Given a graph $G = (V,E)$, a subgraph $H$ is an emph{additive $+beta$ spanner} if $dist_H(u,v) le dist_G(u,v) + beta$ for all $u, v in V$. A emph{pairwise spanner} is a spanner for which the above inequality only must hold for specific pairs $P subse teq V times V$ given on input, and when the pairs have the structure $P = S times S$ for some subset $S subseteq V$, it is specifically called a emph{subsetwise spanner}. Spanners in unweighted graphs have been studied extensively in the literature, but have only recently been generalized to weighted graphs. In this paper, we consider a multi-level version of the subsetwise spanner in weighted graphs, where the vertices in $S$ possess varying level, priority, or quality of service (QoS) requirements, and the goal is to compute a nested sequence of spanners with the minimum number of total edges. We first generalize the $+2$ subsetwise spanner of [Pettie 2008, Cygan et al., 2013] to the weighted setting. We experimentally measure the performance of this and several other algorithms for weighted additive spanners, both in terms of runtime and sparsity of output spanner, when applied at each level of the multi-level problem. Spanner sparsity is compared to the sparsest possible spanner satisfying the given error budget, obtained using an integer programming formulation of the problem. We run our experiments with respect to input graphs generated by several different random graph generators: ErdH{o}s--R{e}nyi, Watts--Strogatz, Barab{a}si--Albert, and random geometric models. By analyzing our experimental results we developed a new technique of changing an initialization parameter value that provides better performance in practice.
Recent work has pinned down the existentially optimal size bounds for vertex fault-tolerant spanners: for any positive integer $k$, every $n$-node graph has a $(2k-1)$-spanner on $O(f^{1-1/k} n^{1+1/k})$ edges resilient to $f$ vertex faults, and ther e are examples of input graphs on which this bound cannot be improved. However, these proofs work by analyzing the output spanner of a certain exponential-time greedy algorithm. In this work, we give the first algorithm that produces vertex fault tolerant spanners of optimal size and which runs in polynomial time. Specifically, we give a randomized algorithm which takes $widetilde{O}left( f^{1-1/k} n^{2+1/k} + mf^2right)$ time. We also derandomize our algorithm to give a deterministic algorithm with similar bounds. This reflects an exponential improvement in runtime over [Bodwin-Patel PODC 19], the only previously known algorithm for constructing optimal vertex fault-tolerant spanners.
A emph{spanner} of a graph $G$ is a subgraph $H$ that approximately preserves shortest path distances in $G$. Spanners are commonly applied to compress computation on metric spaces corresponding to weighted input graphs. Classic spanner constructions can seamlessly handle edge weights, so long as error is measured emph{multiplicatively}. In this work, we investigate whether one can similarly extend constructions of spanners with purely emph{additive} error to weighted graphs. These extensions are not immediate, due to a key lemma about the size of shortest path neighborhoods that fails for weighted graphs. Despite this, we recover a suitable amortized version, which lets us prove direct extensions of classic $+2$ and $+4$ unweighted spanners (both all-pairs and pairwise) to $+2W$ and $+4W$ weighted spanners, where $W$ is the maximum edge weight. Specifically, we show that a weighted graph $G$ contains all-pairs (pairwise) $+2W$ and $+4W$ weighted spanners of size $O(n^{3/2})$ and $widetilde{O}(n^{7/5})$ ($O(np^{1/3})$ and $O(np^{2/7})$) respectively. For a technical reason, the $+6$ unweighted spanner becomes a $+8W$ weighted spanner; closing this error gap is an interesting remaining open problem. That is, we show that $G$ contains all-pairs (pairwise) $+8W$ weighted spanners of size $O(n^{4/3})$ ($O(np^{1/4})$).
This tutorial review provides a guiding reference to researchers who want to have an overview of the large body of literature about graph spanners. It reviews the current literature covering various research streams about graph spanners, such as diff erent formulations, sparsity and lightness results, computational complexity, dynamic algorithms, and applications. As an additional contribution, we offer a list of open problems on graph spanners.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا