ترغب بنشر مسار تعليمي؟ اضغط هنا

The possibility of improving on the usual multivariate normal confidence was first discussed in Stein (1962). Using the ideas of shrinkage, through Bayesian and empirical Bayesian arguments, domination results, both analytic and numerical, have been obtained. Here we trace some of the developments in confidence set estimation.
We attempt to trace the history and development of Markov chain Monte Carlo (MCMC) from its early inception in the late 1940s through its use today. We see how the earlier stages of Monte Carlo (MC, not MCMC) research have led to the algorithms curre ntly in use. More importantly, we see how the development of this methodology has not only changed our solutions to problems, but has changed the way we think about problems.
Discussion of Estimating Random Effects via Adjustment for Density Maximization by C. Morris and R. Tang [arXiv:1108.3234]
In the class of normal regression models with a finite number of regressors, and for a wide class of prior distributions, a Bayesian model selection procedure based on the Bayes factor is consistent [Casella and Moreno J. Amer. Statist. Assoc. 104 (2 009) 1261--1271]. However, in models where the number of parameters increases as the sample size increases, properties of the Bayes factor are not totally understood. Here we study consistency of the Bayes factors for nested normal linear models when the number of regressors increases with the sample size. We pay attention to two successful tools for model selection [Schwarz Ann. Statist. 6 (1978) 461--464] approximation to the Bayes factor, and the Bayes factor for intrinsic priors [Berger and Pericchi J. Amer. Statist. Assoc. 91 (1996) 109--122, Moreno, Bertolino and Racugno J. Amer. Statist. Assoc. 93 (1998) 1451--1460]. We find that the the Schwarz approximation and the Bayes factor for intrinsic priors are consistent when the rate of growth of the dimension of the bigger model is $O(n^b)$ for $b<1$. When $b=1$ the Schwarz approximation is always inconsistent under the alternative while the Bayes factor for intrinsic priors is consistent except for a small set of alternative models which is characterized.
We develop a new Gibbs sampler for a linear mixed model with a Dirichlet process random effect term, which is easily extended to a generalized linear mixed model with a probit link function. Our Gibbs sampler exploits the properties of the multinomia l and Dirichlet distributions, and is shown to be an improvement, in terms of operator norm and efficiency, over other commonly used MCMC algorithms. We also investigate methods for the estimation of the precision parameter of the Dirichlet process, finding that maximum likelihood may not be desirable, but a posterior mode is a reasonable approach. Examples are given to show how these models perform on real data. Our results complement both the theoretical basis of the Dirichlet process nonparametric prior and the computational work that has been done to date.
This is the solution manual to the odd-numbered exercises in our book Introducing Monte Carlo Methods with R, published by Springer Verlag on December 10, 2009, and made freely available to everyone.
It has long been known that for the comparison of pairwise nested models, a decision based on the Bayes factor produces a consistent model selector (in the frequentist sense). Here we go beyond the usual consistency for nested pairwise models, and sh ow that for a wide class of prior distributions, including intrinsic priors, the corresponding Bayesian procedure for variable selection in normal regression is consistent in the entire class of normal linear models. We find that the asymptotics of the Bayes factors for intrinsic priors are equivalent to those of the Schwarz (BIC) criterion. Also, recall that the Jeffreys--Lindley paradox refers to the well-known fact that a point null hypothesis on the normal mean parameter is always accepted when the variance of the conjugate prior goes to infinity. This implies that some limiting forms of proper prior distributions are not necessarily suitable for testing problems. Intrinsic priors are limits of proper prior distributions, and for finite sample sizes they have been proved to behave extremely well for variable selection in regression; a consequence of our results is that for intrinsic priors Lindleys paradox does not arise.
It is known that there is a dichotomy in the performance of model selectors. Those that are consistent (having the oracle property) do not achieve the asymptotic minimax rate for prediction error. We look at this phenomenon closely, and argue that th e set of parameters on which this dichotomy occurs is extreme, even pathological, and should not be considered when evaluating model selectors. We characterize this set, and show that, when such parameters are dismissed from consideration, consistency and asymptotic minimaxity can be attained simultaneously.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا