ترغب بنشر مسار تعليمي؟ اضغط هنا

Discussion of Estimating Random Effects via Adjustment for Density Maximization by C. Morris and R. Tang

42   0   0.0 ( 0 )
 نشر من قبل Claudio Fuentes
 تاريخ النشر 2011
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Discussion of Estimating Random Effects via Adjustment for Density Maximization by C. Morris and R. Tang [arXiv:1108.3234]

قيم البحث

اقرأ أيضاً

Linear Mixed Effects (LME) models have been widely applied in clustered data analysis in many areas including marketing research, clinical trials, and biomedical studies. Inference can be conducted using maximum likelihood approach if assuming Normal distributions on the random effects. However, in many applications of economy, business and medicine, it is often essential to impose constraints on the regression parameters after taking their real-world interpretations into account. Therefore, in this paper we extend the classical (unconstrained) LME models to allow for sign constraints on its overall coefficients. We propose to assume a symmetric doubly truncated Normal (SDTN) distribution on the random effects instead of the unconstrained Normal distribution which is often found in classical literature. With the aforementioned change, difficulty has dramatically increased as the exact distribution of the dependent variable becomes analytically intractable. We then develop likelihood-based approaches to estimate the unknown model parameters utilizing the approximation of its exact distribution. Simulation studies have shown that the proposed constrained model not only improves real-world interpretations of results, but also achieves satisfactory performance on model fits as compared to the existing model.
41 - Michael D. Larsen 2011
Discussion of Calibrated Bayes, for Statistics in General, and Missing Data in Particular by R. Little [arXiv:1108.1917]
Estimation of causal effects is fundamental in situations were the underlying system will be subject to active interventions. Part of building a causal inference engine is defining how variables relate to each other, that is, defining the functional relationship between variables given conditional dependencies. In this paper, we deviate from the common assumption of linear relationships in causal models by making use of neural autoregressive density estimators and use them to estimate causal effects within the Pearls do-calculus framework. Using synthetic data, we show that the approach can retrieve causal effects from non-linear systems without explicitly modeling the interactions between the variables.
We discuss the recent paper on excursion effect by T. Qian et al. (2020). We show that the methods presented have close relationships to others in the literature, in particular to a series of papers by Robins, Hern{a}n and collaborators on analyzing observational studies as a series of randomized trials. There is also a close relationship to the history-restricted and the history-adjusted marginal structural models (MSM). Important differences and their methodological implications are clarified. We also demonstrate that the excursion effect can depend on the design and discuss its suitability for modifying the treatment protocol.
Forest-based methods have recently gained in popularity for non-parametric treatment effect estimation. Building on this line of work, we introduce causal survival forests, which can be used to estimate heterogeneous treatment effects in a survival a nd observational setting where outcomes may be right-censored. Our approach relies on orthogonal estimating equations to robustly adjust for both censoring and selection effects. In our experiments, we find our approach to perform well relative to a number of baselines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا