ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we use an observational approach and dynamical system analysis to study the cosmological model recently proposed by Saridakis (2020), which is based on the modification of the entropy-area black hole relation proposed by Barrow (2020). The Friedmann equations governing the dynamics of the Universe under this entropy modification can be calculated through the gravity-thermodynamics conjecture. We investigate two models, one considering only a matter component and the other including matter and radiation, which have new terms compared to the standard model sourcing the late cosmic acceleration. A Bayesian analysis is performed in which we use five cosmological observations (observational Hubble data, type Ia supernovae, HII galaxies, strong lensing systems, and baryon acoustic oscillations) to constrain the free parameters of both models. From a joint analysis, we obtain constraints that are consistent with the standard cosmological paradigm within $2sigma$ confidence level. In addition, a complementary dynamical system analysis using local and global variables is developed which allows obtaining a qualitative description of the cosmology. As expected, we found that the dynamical equations have a de Sitter solution at late times.
The derivation of conservation laws and invariant functions is an essential procedure for the investigation of nonlinear dynamical systems. In this study we consider a two-field cosmological model with scalar fields defined in the Jordan frame. In pa rticular we consider a Brans-Dicke scalar field theory and for the second scalar field we consider a quintessence scalar field minimally coupled to gravity. For this cosmological model we apply for the first time a new technique for the derivation of conservation laws without the application of variational symmetries. The results are applied for the derivation of new exact solutions. The stability properties of the scaling solutions are investigated and criteria for the nature of the second field according to the stability of these solutions are determined.
We consider a cosmological scenario endowed with an interaction between the universes dark components $-$ dark matter and dark energy. Specifically, we assume the dark matter component to be a pressure-less fluid, while the dark energy component is a quintessence scalar field with Lagrangian function modified by the quadratic Generalized Uncertainty Principle. The latter modification introduces new higher-order terms of fourth-derivative due to quantum corrections in the scalar fields equation of motion. Then we investigate asymptotic dynamics and general behaviour of solutions of the field equations for some interacting models of special interests in the literature. At the background level, the present interacting model exhibits the matter-dominated and de Sitter solutions which are absent in the corresponding quintessence model. Furthermore, to boost the background analysis, we study cosmological linear perturbations in the Newtonian gauge where we show how perturbations are modified by quantum corrected terms from the quadratic Generalized Uncertainty Principle. Depending on the coupling parameters, scalar perturbations show a wide range of behavior.
We apply the Painleve Test for the Benney and the Benney-Gjevik equations which describe waves in falling liquids. We prove that these two nonlinear 1+1 evolution equations pass the singularity test for the travelling-wave solutions. The algebraic so lutions in terms of Laurent expansions are presented.
Scalar field cosmologies with a generalized harmonic potential and matter with energy density $rho_m$, pressure $p_m$, and barotropic equation of state (EoS) $p_m=(gamma-1)rho_m, ; gammain[0,2]$ in Kantowski-Sachs (KS) and closed Friedmann--Lema^itre --Robertson--Walker (FLRW) metrics are investigated. We use methods from non--linear dynamical systems theory and averaging theory considering a time--dependent perturbation function $D$. We define a regular dynamical system over a compact phase space, obtaining global results. That is, for KS metric the global late--time attractors of full and time--averaged systems are two anisotropic contracting solutions, which are non--flat locally rotationally symmetric (LRS) Kasner and Taub (flat LRS Kasner) for $0leq gamma leq 2$, and flat FLRW matter--dominated universe if $0leq gamma leq frac{2}{3}$. For closed FLRW metric late--time attractors of full and averaged systems are a flat matter--dominated FLRW universe for $0leq gamma leq frac{2}{3}$ as in KS and Einstein-de Sitter solution for $0leqgamma<1$. Therefore, time--averaged system determines future asymptotics of full system. Also, oscillations entering the system through Klein-Gordon (KG) equation can be controlled and smoothed out when $D$ goes monotonically to zero, and incidentally for the whole $D$-range for KS and for closed FLRW (if $0leq gamma< 1$) too. However, for $gammageq 1$ closed FLRW solutions of the full system depart from the solutions of the averaged system as $D$ is large. Our results are supported by numerical simulations.
Scalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic Equation of State (EoS) with barotropic index $gamma$ for the Locally Rotationally Symmetric (LRS) Bianchi I and flat Friedmann-Lema^itre-Robertson-Wa lker (FLRW) metrics are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averag
Scalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic Equation of State (EoS) with barotropic index $gamma$ for Locally Rotationally Symmetric (LRS) Bianchi III metric and open Friedmann-Lema^itre-Roberts on-Walker (FLRW) metric are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averag
In the present article we study the cosmological evolution of a two-scalar field gravitational theory defined in the Jordan frame. Specifically, we assume one of the scalar fields to be minimally coupled to gravity, while the second field which is th e Brans-Dicke scalar field is nonminimally coupled to gravity and also coupled to the other scalar field. In the Einstein frame this theory reduces to a two-scalar field theory where the two fields can interact only in the potential term, which means that the quintom theory is recovered. The cosmological evolution is studied by analyzing the equilibrium points of the field equations in the Jordan frame. We find that the theory can describe the cosmological evolution in large scales, while inflationary solutions are also provided.
We investigate the existence of analytic solutions for the field equations in the Einstein-ae ther theory for a static spherically symmetric spacetime and provide a detailed dynamical system analysis of the field equations. In particular, we investig ate if the gravitational field equations in the Einstein-ae ther model in the static spherically symmetric spacetime possesses the Painlev`e property, so that an analytic explicit integration can be performed. We find that analytic solutions can be presented in terms of Laurent expansion only when the matter source consists of a perfect fluid with linear equation of state (EoS) $mu =mu _{0}+left( texttt{h} -1right) p,~texttt{h} >1$. In order to study the field equations we apply the Tolman-Oppenheimer-Volkoff (TOV) approach and other approaches. We find that the relativistic TOV equations are drastically modified in Einstein-ae ther theory, and we explore the physical implications of this modification. We study perfect fluid models with a scalar field with an exponential potential. We discuss all of the equilibrium points and discuss their physical properties.
82 - Genly Leon 2018
We study the phase space of the quintom cosmologies for a class of exponential potentials. We combine normal forms expansions and the center manifold theory in order to describe the dynamics near equilibrium sets. Furthermore, we construct the unstab le and center manifold of the massless scalar field cosmology motivated by the numerical results given in Lazkoz and Leon (Phys Lett B 638:303. arXiv:astro-ph/0602590, 2006). We study the role of the curvature on the dynamics. Several monotonic functions are defined on relevant invariant sets for the quintom cosmology. Finally, conservation laws of the cosmological field equations and algebraic solutions are determined by using the symmetry analysis and the singularity analysis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا