ﻻ يوجد ملخص باللغة العربية
We investigate the existence of analytic solutions for the field equations in the Einstein-ae ther theory for a static spherically symmetric spacetime and provide a detailed dynamical system analysis of the field equations. In particular, we investigate if the gravitational field equations in the Einstein-ae ther model in the static spherically symmetric spacetime possesses the Painlev`e property, so that an analytic explicit integration can be performed. We find that analytic solutions can be presented in terms of Laurent expansion only when the matter source consists of a perfect fluid with linear equation of state (EoS) $mu =mu _{0}+left( texttt{h} -1right) p,~texttt{h} >1$. In order to study the field equations we apply the Tolman-Oppenheimer-Volkoff (TOV) approach and other approaches. We find that the relativistic TOV equations are drastically modified in Einstein-ae ther theory, and we explore the physical implications of this modification. We study perfect fluid models with a scalar field with an exponential potential. We discuss all of the equilibrium points and discuss their physical properties.
In this paper, we systematically study spherically symmetric static spacetimes in the framework of Einstein-aether theory, and pay particular attention to the existence of black holes (BHs). In the present studies we first clarify several subtle issu
We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a wel
By using of the Euler-Lagrange equations, we find a static spherically symmetric solution in the Einstein-aether theory with the coupling constants restricted. The solution is similar to the Reissner-Nordstrom solution in that it has an inner Cauchy
We study spherically symmetric spacetimes in Einstein-aether theory in three different coordinate systems, the isotropic, Painlev`e-Gullstrand, and Schwarzschild coordinates, in which the aether is always comoving, and present both time-dependent and
We investigate the Tolman-Oppenheimer-Volkoff equations for the generalized Chaplygin gas with the aim of extending the findings of V. Gorini, U. Moschella, A. Y. Kamenshchik, V. Pasquier, and A. A. Starobinsky [Phys. Rev. D {bf 78}, 064064 (2008)].