ترغب بنشر مسار تعليمي؟ اضغط هنا

Roton dispersion relations, displaying a pronounced roton minimum at finite momentum, were firstly predicted by Landau and have been extensively explored in correlated quantum systems at low temperatures. Recently, the roton-like dispersion relations were theoretically extended to classical acoustics, which, however, have remained elusive in reality. Here, we report the experimental observation of roton-like dispersions in acoustic metamaterials with beyond-nearest-neighbour interactions at ambient temperatures. The resulting metamaterial supports multiple coexisting modes with different wavevectors and group velocities at the same frequency and broadband backward waves, analogous to the return flow termed by Feynman in the context of rotons. Moreover, by increasing the order of long-range interaction, we observe multiple rotons on a single dispersion band, which have never appeared in Landaus prediction or any other condensed matter study. The realization of roton-like dispersions in metamaterials could pave the way to explore novel physics and applications on quantum-inspired phenomena in classical systems.
We construct numerically the symmetric non-Abelian wormholes which are supported by a phantom field in the Einstein-Yang-Mills-Higgs theory beyond Bogomolnyi-Prasad-Sommerfield (BPS) limit where the Higgs self-interaction constant $lambda$ is non-van ishing. Analogous to the BPS limit, the probe limit is the Yang-Mills-Higgs field in the background of the Ellis wormhole when the gravity is switched off. In the presence of gravity, the wormhole solutions possess the Yang-Mills-Higgs hair where families of hairy wormholes solutions emerge from the Ellis wormhole when the gravitational coupling constant increases. In contrast to the BPS limit, the properties of wormholes change drastically when the gravitational strength approaches a critical value for a fixed $lambda$. The hairy wormholes possess two types of double throat configurations. The first type is wormholes that develop the double throat when the gravitational strength almost approaches the critical value for lower $lambda$, whereas the second type is wormholes that exhibit the double throat for a certain range of gravitational strength for higher $lambda$. These two types of double throat configurations can coexist for a certain range of $lambda$ where it is a transition process for first type double throat disappears gradually and the second type double throat becomes dominant.
Weyl semimetals are gapless three-dimensional (3D) phases whose bandstructures contain Weyl point (WP) degeneracies. WPs carry topological charge and can only be eliminated by mutual annihilation, a process that generates the various topologically di stinct 3D insulators. Time reversal (T) symmetric Weyl phases, containing a minimum of four WPs, have been extensively studied in real materials, photonic metamaterials, and other systems. Weyl phases with a single WP pair - the simplest configuration of WPs - are more elusive as they require T-breaking. Here, we implement a microwave-scale gyromagnetic 3D photonic crystal, and use field-mapping experiments to track a single pair of ideal WPs whose momentum space locations depend strongly on the biasing magnetic field. By continuously varying the field strength, we observe the annihilation of the WPs, and the formation of a 3D Chern insulator, a previously unrealised member of the family of 3D topological insulators (TIs). Surface measurements show, in unprecedented detail, how the Fermi arc states connecting the WPs evolve into TI surface states.
Recently, some Neural Architecture Search (NAS) techniques are proposed for the automatic design of Graph Convolutional Network (GCN) architectures. They bring great convenience to the use of GCN, but could hardly apply to the Federated Learning (FL) scenarios with distributed and private datasets, which limit their applications. Moreover, they need to train many candidate GCN models from scratch, which is inefficient for FL. To address these challenges, we propose FL-AGCNS, an efficient GCN NAS algorithm suitable for FL scenarios. FL-AGCNS designs a federated evolutionary optimization strategy to enable distributed agents to cooperatively design powerful GCN models while keeping personal information on local devices. Besides, it applies the GCN SuperNet and a weight sharing strategy to speed up the evaluation of GCN models. Experimental results show that FL-AGCNS can find better GCN models in short time under the FL framework, surpassing the state-of-the-arts NAS methods and GCN models.
In this paper, we study the FCNC decay processes of $B$ and $B_c$ meson, in which one invisible particle is emitted. Both the spin-0 and spin-1 cases are considered. The model-independent effective Lagrangian is introduced to describe the coupling be tween the light invisible boson and quarks. The constraints of the coupling coefficients are extracted by experimental upper limits of the missing energy in $B$ meson decays. The bounds are used to predict the upper limits of branching fractions of corresponding $B_c$ decays, which are of the order of $10^{-6}$ or $10^{-5}$ when final meson is pseudoscalar or vector, respectively. The maximum branch ratios are achieved when $m_chiapprox3.5- 4$~GeV, where $m_chi$ is the mass of the invisible particle.
Silicene is a promising 2D Dirac material as a building block for van der Waals heterostructures (vdWHs). Here we investigate the electronic properties of hexagonal boron nitride/silicene (BN/Si) vdWHs using first-principles calculations. We calculat e the energy band structures of BN/Si/BN heterostructures with different rotation angles and find that the electronic properties of silicene are retained and protected robustly by the BN layers. In BN/Si/BN/Si/BN heterostructure, we find that the band structure near the Fermi energy is sensitive to the stacking configurations of the silicene layers due to interlayer coupling. The coupling is reduced by increasing the number of BN layers between the silicene layers and becomes negligible in BN/Si/(BN)3/Si/BN. In (BN)n/Si superlattices, the band structure undergoes a conversion from Dirac lines to Dirac points by increasing the number of BN layers between the silicene layers. Calculations of silicene sandwiched by other 2D materials reveal that silicene sandwiched by low-carbon-doped boron nitride or HfO2 is semiconducting.
356 - Yugeng Liu , Rui Wen , Xinlei He 2021
Inference attacks against Machine Learning (ML) models allow adversaries to learn information about training data, model parameters, etc. While researchers have studied these attacks thoroughly, they have done so in isolation. We lack a comprehensive picture of the risks caused by the attacks, such as the different scenarios they can be applied to, the common factors that influence their performance, the relationship among them, or the effectiveness of defense techniques. In this paper, we fill this gap by presenting a first-of-its-kind holistic risk assessment of different inference attacks against machine learning models. We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing - and establish a threat model taxonomy. Our extensive experimental evaluation conducted over five model architectures and four datasets shows that the complexity of the training dataset plays an important role with respect to the attacks performance, while the effectiveness of model stealing and membership inference attacks are negatively correlated. We also show that defenses like DP-SGD and Knowledge Distillation can only hope to mitigate some of the inference attacks. Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models, and equally serves as a benchmark tool for researchers and practitioners.
72 - Lu Cao , Wenyao Liu , Geng Li 2021
We observe two types of superconducting states controlled by orientations of local wrinkles on the surface of LiFeAs. Using scanning tunneling microscopy/spectroscopy, we find type-I wrinkles enlarge the superconducting gaps and enhance the transitio n temperature, whereas type-II wrinkles significantly suppress the superconducting gaps. The vortices on wrinkles show a C2 symmetry, indicating the strain effects on the wrinkles. A discontinuous switch of superconductivity occurs at the border between two different wrinkles. Our results demonstrate that the local strain effect could affect superconducting order parameter of LiFeAs with a possible Lifshitz transition, by alternating crystal structure in different directions.
In this work, we study the lepton-number-violating processes of $K^pm$ and $D^pm$ mesons. Two quasi-degenerate sterile neutrinos are assumed to induce such processes. Different with the case where only one sterile neutrino involves, here, the CP phas es of the mixing parameters could give sizable contribution. This, in turn, would affect the absolute values of the mixing parameters determined by the experimental upper limits of the branching fractions. A general function which express the difference of the mixing parameters for two-generation and one-generation is presented. Special cases with specific relations of the parameters are discussed. Besides, we also thoroughly investigate the CP violation effect of such processes. It is shown that generally $mathcal A_{CP}$ is a function of the sterile neutrino mass.
Chiral edge states are a hallmark feature of two-dimensional topological materials. Such states must propagate along the edges of the bulk either clockwise or counterclockwise, and thus produce oppositely propagating edge states along the two paralle l edges of a strip sample. However, recent theories have predicted a counterintuitive picture, where the two edge states at the two parallel strip edges can propagate in the same direction; these anomalous topological edge states are named as antichiral edge states. Here we report the experimental observation of antichiral edge states in a gyromagnetic photonic crystal. The crystal consists of gyromagnetic cylinders in a honeycomb lattice, with the two triangular sublattices magnetically biased in opposite directions. With microwave measurement, unique properties of antichiral edge states have been observed directly, which include the titled dispersion, the chiral-like robust propagation in samples with certain shapes, and the scattering into backward bulk states at certain terminations. These results extend and supplement the current understanding of chiral edge states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا