ترغب بنشر مسار تعليمي؟ اضغط هنا

The study of two quasi-degenerate heavy sterile neutrinos in rare meson decays

42   0   0.0 ( 0 )
 نشر من قبل Jiabao Zhang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we study the lepton-number-violating processes of $K^pm$ and $D^pm$ mesons. Two quasi-degenerate sterile neutrinos are assumed to induce such processes. Different with the case where only one sterile neutrino involves, here, the CP phases of the mixing parameters could give sizable contribution. This, in turn, would affect the absolute values of the mixing parameters determined by the experimental upper limits of the branching fractions. A general function which express the difference of the mixing parameters for two-generation and one-generation is presented. Special cases with specific relations of the parameters are discussed. Besides, we also thoroughly investigate the CP violation effect of such processes. It is shown that generally $mathcal A_{CP}$ is a function of the sterile neutrino mass.



قيم البحث

اقرأ أيضاً

180 - Sebastian Tapia 2021
In this work, we study the lepton flavor and lepton number violating $B_{c}$ meson decays via two intermediate on-shell Majorana neutrinos $N_j$ into two charged leptons and a charged pion $B_{c}^{pm} to mu^{pm} N_j to mu^{pm} tau^{pm} pi^{mp}$. We evaluated the possibility to measure the modulation of the decay width along the detector length produced as a consequence of the lepton flavor violating process, in a scenario where the heavy neutrinos masses range between $2.0$ GeV $leq M_N leq 6.0$ GeV. We study some realistic conditions which could lead to the observation of this phenomenon at futures $B$ factories such HL-LHCb.
We revise the bounds on heavy sterile neutrinos, especially in the case of their mixing with muon neutrinos in the charged current. We summarize the present experimental limits, and we reanalyze the existing data from the accelerator neutrino experim ents and from Super-Kamiokande to set new bounds on a heavy sterile neutrino in the range of masses from 8 MeV to 390 MeV. We also discuss how the future accelerator neutrino experiments can improve the present limits.
A phenomenological analysis of the scalar meson f0(980) is performed that relies on the quasi-two body decays D and Ds -> f0(980)P, with P=pi, K. The two-body branching ratios are deduced from experimental data on D or Ds -> pi pi pi, K Kbar pi and f rom the f0(980) -> pi+ pi- and f0(980) -> K+ K- branching fractions. Within a covariant quark model, the scalar form factors F0(q2) for the transitions D and Ds -> f0(980) are computed. The weak D decay amplitudes, in which these form factors enter, are obtained in the naive factorization approach assuming a quark-antiquark state for the scalar and pseudoscalar mesons. They allow to extract information on the f0(980) wave function in terms of u-ubar, d-dbar and s-sbar pairs as well as on the mixing angle between the strange and non-strange components. The weak transition form factors are modeled by the one-loop triangular diagram using two different relativistic approaches: covariant light-front dynamics and dispersion relations. We use the information found on the f0(980) structure to evaluate the scalar and vector form factors in the transitions D and Ds -> f0(980), as well as to make predictions for B and Bs -> f0(980), for the entire kinematically allowed momentum range of q2.
In this paper, we study the lepton number violation processes of $B_c$ meson induced by possible doubly-charged scalars. Both the three-body decay channels and the four-body decay channels are considered. For the former, $Brtimesleft(frac{s_Delta h_{ ij}}{M_Delta^2}right)^{-2}$ is of the order of $10^{-7}sim 10^{-9}$, and for the later channels, $Brtimesleft(frac{s_Delta h_{ij}}{M_Delta^2}right)^{-2}$ is of the order of $10^{-12}sim 10^{-20}$, where $s_Delta$, $h_{ij}$, $M_Delta$ are the constants related to the doubly-charged boson.
329 - Ben OLeary 2009
Results are presented for the two-body decays of mesons into light neutralinos and from the first complete calculation of the loop-induced decays of kaons to pions plus light neutralinos and of B mesons to kaons plus light neutralinos. The branching ratios are shown to be strongly suppressed within the MSSM with minimal flavor violation, and no bounds on the neutralino mass can be inferred from experimental data, i.e. a massless neutralino is allowed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا