ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we propose a monotone approximation scheme for a class of fully nonlinear partial integro-differential equations (PIDEs) which characterize the nonlinear $alpha$-stable L{e}vy processes under sublinear expectation space with $alpha in( 1,2)$. Two main results are obtained: (i) the error bounds for the monotone approximation scheme of nonlinear PIDEs, and (ii) the convergence rates of a generalized central limit theorem of Bayraktar-Munk for $alpha$-stable random variables under sublinear expectation. Our proofs use and extend techniques introduced by Krylov and Barles-Jakobsen.
We study quantitative stability of the solutions to Markovian quadratic reflected BSDEs with bounded terminal data. By virtue of the BMO martingale and change of measure techniques, we obtain the estimate of the variation of the solutions in terms of the difference of the driven forward processes. In addition, we propose a truncated discrete-time numerical scheme for quadratic reflected BSDEs, and obtain the explicit rate of convergence by applying the quantitative stability result.
We derive the explicit solution to a singular stochastic control problem of the monotone follower type with an expected ergodic criterion as well as to its counterpart with a pathwise ergodic criterion. These problems have been motivated by the optim al sustainable exploitation of an ecosystem, such as a natural fishery. Under general assumptions on the diffusion coefficients and the running payoff function, we show that both performance criteria give rise to the same optimal long-term average rate as well as to the same optimal strategy, which is of a threshold type. We solve the two problems by first constructing a suitable solution to their associated Hamilton-Jacobi-Bellman (HJB) equation, which takes the form of a quasi-variational inequality with a gradient constraint.
The paper solves constrained Dynkin games with risk-sensitive criteria, where two players are allowed to stop at two independent Poisson random intervention times, via the theory of backward stochastic differential equations. This generalizes the pre vious work of [Liang and Sun, Dynkin games with Poisson random intervention times, SIAM Journal on Control and Optimization, 2019] from the risk-neutral criteria and common signal times for both players to the risk-sensitive criteria and two heterogenous signal times. Furthermore, the paper establishes a connection of such constrained risk-sensitive Dynkin games with a class of stochastic differential games via Krylovs randomized stopping technique.
This paper studies an optimal forward investment problem in an incomplete market with model uncertainty, in which the underlying stocks depend on the correlated stochastic factors. The uncertainty stems from the probability measure chosen by an inves tor to evaluate the performance. We obtain directly the representation of the homothetic robust forward performance processes in factor-form by combining the zero-sum stochastic differential game and ergodic BSDE approach. We also establish the connections with the risk-sensitive zero-sum stochastic differential games over an infinite horizon with ergodic payoff criteria, as well as with the classical robust expected utilities for long time horizons. Finally, we give an example to illustrate that our approach can be applied to address a type of robust forward investment performance processes with negative realization processes.
This paper proposes a hybrid credit risk model, in closed form, to price vulnerable options with stochastic volatility. The distinctive features of the model are threefold. First, both the underlying and the option issuers assets follow the Heston-Na ndi GARCH model with their conditional variance being readily estimated and implemented solely on the basis of the observable prices in the market. Second, the model incorporates both idiosyncratic and systematic risks into the asset dynamics of the underlying and the option issuer, as well as the intensity process. Finally, the explicit pricing formula of vulnerable options enables us to undertake the comparative statistics analysis.
111 - Shuo Huang , Gechun Liang 2019
We propose a monotone approximation scheme for a class of fully nonlinear PDEs called G-equations. Such equations arise often in the characterization of G-distributed random variables in a sublinear expectation space. The proposed scheme is construct ed recursively based on a piecewise constant approximation of the viscosity solution to the G-equation. We establish the convergence of the scheme and determine the convergence rate with an explicit error bound, using the comparison principles for both the scheme and the equation together with a mollification procedure. The first application is obtaining the convergence rate of Pengs robust central limit theorem with an explicit bound of Berry-Esseen type. The second application is an approximation scheme with its convergence rate for the Black-Scholes-Barenblatt equation.
We introduce and solve a new type of quadratic backward stochastic differential equation systems defined in an infinite time horizon, called emph{ergodic BSDE systems}. Such systems arise naturally as candidate solutions to characterize forward perfo rmance processes and their associated optimal trading strategies in a regime switching market. In addition, we develop a connection between the solution of the ergodic BSDE system and the long-term growth rate of classical utility maximization problems, and use the ergodic BSDE system to study the large time behavior of PDE systems with quadratic growth Hamiltonians.
This paper solves the optimal investment and consumption strategies for a risk-averse and ambiguity-averse agent in an incomplete financial market with model uncertainty. The market incompleteness arises from investment constraints of the agent, whil e the model uncertainty stems from drift and volatility processes for risky stocks in the financial market. The agent seeks her best and robust strategies via optimizing her robust forward investment and consumption preferences. Her robust forward preferences and the associated optimal strategies are represented by solutions of ordinary differential equations, when there are both drift and volatility uncertainties, and infinite horizon backward stochastic differential equations, coupled with ordinary differential equations, when there is only drift uncertainty.
145 - Gechun Liang , Zhou Yang 2018
A make-your-mind-up option is an American derivative with delivery lags. We show that its put option can be decomposed as a European put and a new type of American-style derivative. The latter is an option for which the investor receives the Greek Th eta of the corresponding European option as the running payoff, and decides an optimal stopping time to terminate the contract. Based on this decomposition and using free boundary techniques, we show that the associated optimal exercise boundary exists and is a strictly increasing and smooth curve, and analyze the asymptotic behavior of the value function and the optimal exercise boundary for both large maturity and small time lag.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا