ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of the optimal exercise boundary of American put options with delivery lags

146   0   0.0 ( 0 )
 نشر من قبل Gechun Liang
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

A make-your-mind-up option is an American derivative with delivery lags. We show that its put option can be decomposed as a European put and a new type of American-style derivative. The latter is an option for which the investor receives the Greek Theta of the corresponding European option as the running payoff, and decides an optimal stopping time to terminate the contract. Based on this decomposition and using free boundary techniques, we show that the associated optimal exercise boundary exists and is a strictly increasing and smooth curve, and analyze the asymptotic behavior of the value function and the optimal exercise boundary for both large maturity and small time lag.

قيم البحث

اقرأ أيضاً

The main objective of this paper is to present an algorithm of pricing perpetual American put options with asset-dependent discounting. The value function of such an instrument can be described as begin{equation*} V^{omega}_{text{A}^{text{Put}}}(s) = sup_{tauinmathcal{T}} mathbb{E}_{s}[e^{-int_0^tau omega(S_w) dw} (K-S_tau)^{+}], end{equation*} where $mathcal{T}$ is a family of stopping times, $omega$ is a discount function and $mathbb{E}$ is an expectation taken with respect to a martingale measure. Moreover, we assume that the asset price process $S_t$ is a geometric Levy process with negative exponential jumps, i.e. $S_t = s e^{zeta t + sigma B_t - sum_{i=1}^{N_t} Y_i}$. The asset-dependent discounting is reflected in the $omega$ function, so this approach is a generalisation of the classic case when $omega$ is constant. It turns out that under certain conditions on the $omega$ function, the value function $V^{omega}_{text{A}^{text{Put}}}(s)$ is convex and can be represented in a closed form; see Al-Hadad and Palmowski (2021). We provide an option pricing algorithm in this scenario and we present exact calculations for the particular choices of $omega$ such that $V^{omega}_{text{A}^{text{Put}}}(s)$ takes a simplified form.
This paper examines the valuation of American capped call options with two-level caps. The structure of the immediate exercise region is significantly more complex than in the classical case with constant cap. When the cap grows over time, making ext ensive use of probabilistic arguments and local time, we show that the exercise region can be the union of two disconnected set. Alternatively, it can consist of two sets connected by a line. The problem then reduces to the characterization of the upper boundary of the first set, which is shown to satisfy a recursive integral equation. When the cap decreases over time, the boundary of the exercise region has piecewise constant segments alternating with non-increasing segments. General representation formulas for the option price, involving the exercise boundaries and the local time of the underlying price process, are derived. An efficient algorithm is developed and numerical results are provided.
71 - Miquel Montero 2007
Continuous-time random walks are a well suited tool for the description of market behaviour at the smallest scale: the tick-to-tick evolution. We will apply this kind of market model to the valuation of perpetual American options: derivatives with no maturity that can be exercised at any time. Our approach leads to option prices that fulfil financial formulas when canonical assumptions on the dynamics governing the process are made, but it is still suitable for more exotic market conditions.
We consider the problem of finding a model-free upper bound on the price of an American put given the prices of a family of European puts on the same underlying asset. Specifically we assume that the American put must be exercised at either $T_1$ or $T_2$ and that we know the prices of all vanilla European puts with these maturities. In this setting we find a model which is consistent with European put prices and an associated exercise time, for which the price of the American put is maximal. Moreover we derive a cheapest superhedge. The model associated with the highest price of the American put is constructed from the left-curtain martingale transport of Beiglb{o}ck and Juillet.
We analyze and calculate the early exercise boundary for a class of stationary generalized Black-Scholes equations in which the volatility function depends on the second derivative of the option price itself. A motivation for studying the nonlinear B lack Scholes equation with a nonlinear volatility arises from option pricing models including, e.g., non-zero transaction costs, investors preferences, feedback and illiquid markets effects and risk from unprotected portfolio. We present a method how to transform the problem of American style of perpetual put options into a solution of an ordinary differential equation and implicit equation for the free boundary position. We finally present results of numerical approximation of the early exercise boundary, option price and their dependence on model parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا