ﻻ يوجد ملخص باللغة العربية
This paper proposes a hybrid credit risk model, in closed form, to price vulnerable options with stochastic volatility. The distinctive features of the model are threefold. First, both the underlying and the option issuers assets follow the Heston-Nandi GARCH model with their conditional variance being readily estimated and implemented solely on the basis of the observable prices in the market. Second, the model incorporates both idiosyncratic and systematic risks into the asset dynamics of the underlying and the option issuer, as well as the intensity process. Finally, the explicit pricing formula of vulnerable options enables us to undertake the comparative statistics analysis.
The Heston stochastic volatility model is a standard model for valuing financial derivatives, since it can be calibrated using semi-analytical formulas and captures the most basic structure of the market for financial derivatives with simple structur
In this paper we develop an algorithm to calculate the prices and Greeks of barrier options in a hyper-exponential additive model with piecewise constant parameters. We obtain an explicit semi-analytical expression for the first-passage probability.
In this paper, we price American-style Parisian down-and-in call options under the Black-Scholes framework. Usually, pricing an American-style option is much more difficult than pricing its European-style counterpart because of the appearance of the
We develop a model for indifference pricing in derivatives markets where price quotes have bid-ask spreads and finite quantities. The model quantifies the dependence of the prices and hedging portfolios on an investors beliefs, risk preferences and f
This paper focuses on the pricing of continuous geometric Asian options (GAOs) under a multifactor stochastic volatility model. The model considers fast and slow mean reverting factors of volatility, where slow volatility factor is approximated by a