ترغب بنشر مسار تعليمي؟ اضغط هنا

40 - Gavin W. Morley 2014
Dopants in crystalline silicon such as phosphorus (Si:P) have electronic and nuclear spins with exceptionally long coherence times making them promising platforms for quantum computing and quantum sensing. The demonstration of single-spin single-shot readout brings these ideas closer to implementation. Progress in fabricating atomic-scale Si:P structures with scanning tunnelling microscopes offers a powerful route to scale up this work, taking advantage of techniques developed by the computing industry. The experimental and theoretical sides of this emerging quantum technology are reviewed with a focus on the period from 2009 to mid-2014.
A prerequisite for exploiting spins for quantum data storage and processing is long spin coherence times. Phosphorus dopants in silicon (Si:P) have been favoured as hosts for such spins because of measured electron spin coherence times (T2) longer th an any other electron spin in the solid state: 14 ms at 7 K. Heavier impurities such as bismuth in silicon (Si:Bi) could be used in conjunction with Si:P for quantum information proposals that require two separately addressable spin species. However, the question of whether the incorporation of the much less soluble Bi into Si leads to defect species that destroy coherence has not been addressed. Here we show that schemes involving Si:Bi are indeed feasible as the electron spin coherence time T2 exceeds 1 ms at 10 K. We polarized the Si:Bi electrons and hyperpolarized the I=9/2 nuclear spin of 209Bi, manipulating both with pulsed magnetic resonance. The larger nuclear spin means that a Si:Bi dopant provides a 20-dimensional Hilbert space rather than the four dimensional Hilbert space of an I=1/2 Si:P dopant.
We describe a pulsed multi-frequency electron paramagnetic resonance spectrometer operating at several frequencies in the range of 110-336 GHz. The microwave source at all frequencies consists of a multiplier chain starting from a solid state synthes izer in the 12-15 GHz range. A fast PIN-switch at the base frequency creates the pulses. At all frequencies a Fabry-Perot resonator is employed and the pi/2 pulse length ranges from ~100 ns at 110 GHz to ~600 ns at 334 GHz. Measurements of a single crystal containing dilute Mn2+ impurities at 12 T illustrate the effects of large electron spin polarizations. The capabilities also allow for pulsed electron nuclear double resonance experiments as demonstrated by Mims ENDOR of 39K nuclei in Cr:K3NbO8.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا