ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider $3d$ $mathcal{N}!=!2$ gauge theories with fundamental matter plus a single field in a rank-$2$ representation. Using iteratively a process of deconfinement of the rank-$2$ field, we produce a sequence of Seiberg-dual quiver theories. We d etail this process in two examples with zero superpotential: $Usp(2N)$ gauge theory with an antisymmetric field and $U(N)$ gauge theory with an adjoint field. The fully deconfined dual quiver has $N$ nodes, and can be interpreted as an Aharony dual of theories with rank-$2$ matter. All chiral ring generators of the original theory are mapped into gauge singlet fields of the fully deconfined quiver dual.
Seiberg-like dualities in $2+1$d quiver gauge theories with $4$ supercharges are investigated. We consider quivers made of various combinations of classical gauge groups $U(N)$, $Sp(N)$, $SO(N)$ and $SU(N)$. Our main focus is the mapping of the super symmetric monopole operators across the dual theories. There is a simple general rule that encodes the mapping of the monopoles upon dualising a single node. This rule dictates the mapping of all the monopoles which are not dressed by baryonic operators. We also study more general situations involving baryons and baryon-monopoles, focussing on three examples: $SU-Sp$, $SO-SO$ and $SO-Sp$ quivers.
Enhancement of global symmetry and supersymmetry in the infrared is one of the most intriguing phenomena in quantum field theory. We investigate such phenomena in a large class of three dimensional superconformal field theories, known as the S-fold S CFTs. Supersymmetric indices are computed for a number of theories containing small rank gauge groups. It is found that indices of several models exhibit enhancement of supersymmetry at the superconformal fixed point in the infrared. Dualities between S-fold theories that have different quiver descriptions are also analysed. We explore a new class of theories with a discrete global symmetry, whose gauge symmetry in the quiver has a different global structure from those that have been studied earlier.
It has recently been claimed that a Cardy-like limit of the superconformal index of 4d $mathcal{N}=4$ SYM accounts for the entropy function, whose Legendre transform corresponds to the entropy of the holographic dual AdS$_5$ rotating black hole. Here we study this Cardy-like limit for $mathcal{N}=1$ toric quiver gauge theories, observing that the corresponding entropy function can be interpreted in terms of the toric data. Furthermore, for some families of models, we compute the Legendre transform of the entropy function, comparing with similar results recently discussed in the literature.
A local SL(2,Z) transformation on the Type IIB brane configuration gives rise to an interesting class of superconformal field theories, known as the S-fold CFTs. Previously it has been proposed that the corresponding quiver theory has a link involvin g the T(U(N)) theory. In this paper, we generalise the preceding result by studying quivers that contain a T(G) link, where G is self-dual under S-duality. In particular, the cases of G = SO(2N), USp(2N) and G_2 are examined in detail. We propose the theories that arise from an appropriate insertion of an S-fold into a brane system, in the presence of an orientifold threeplane or an orientifold fiveplane. By analysing the moduli spaces, we test such a proposal against its S-dual configuration using mirror symmetry. The case of G_2 corresponds to a novel class of quivers, whose brane construction is not available. We present several mirror pairs, containing G_2 gauge groups, that have not been discussed before in the literature.
An S-fold has played an important role in constructing supersymmetric field theories with interesting features. It can be viewed as a type of AdS_4 solutions of Type IIB string theory where the fields in overlapping patches are glued by elements of S L(2,Z). This paper examines three dimensional quiver theories that arise from brane configurations with an inclusion of the S-fold. An important feature of such a quiver is that it contains a link, which is the T(U(N)) theory, between two U(N) groups, along with bifundamental and fundamental hypermultiplets. We systematically study the moduli spaces of those quiver theories, including the cases in which the non-zero Chern-Simons levels are turned on. A number of such moduli spaces turns out to have a very rich structure and tells us about the brane dynamics in the presence of an S-fold.
A notable class of superconformal theories (SCFTs) in six dimensions is parameterized by an integer $N$, an ADE group $G$, and two nilpotent elements $mu_mathrm{L,R}$ in $G$. Nilpotent elements have a natural partial ordering, which has been conjectu red to coincide with the hierarchy of renormalization-group flows among the SCFTs. In this paper we test this conjecture for $G=mathrm{SU}(k)$, where AdS$_7$ duals exist in IIA. We work with a seven-dimensional gauged supergravity, consisting of the gravity multiplet and two $mathrm{SU}(k)$ non-Abelian vector multiplets. We show that this theory has many supersymmetric AdS$_7$ vacua, determined by two nilpotent elements, which are naturally interpreted as IIA AdS$_7$ solutions. The BPS equations for domain walls connecting two such vacua can be solved analytically, up to a Nahm equation with certain boundary conditions. The latter admit a solution connecting two vacua if and only if the corresponding nilpotent elements are related by the natural partial ordering, in agreement with the field theory conjecture.
The geometry of the ${cal N} = 3$, SO(4)--invariant, AdS$_4$ solution of massive type IIA supergravity that uplifts from the ${cal N} = 3 $ vacuum of $D=4$ ${cal N} = 8$ dyonic ISO(7) supergravity is investigated. Firstly, a $D=4$, SO(4)--invariant r estricted duality hierarchy is constructed and used to uplift the entire, dynamical SO(4)--invariant sector to massive type IIA. The resulting consistent uplift formulae are used to obtain a new local expression for the ${cal N} = 3 $ AdS$_4$ solution in massive IIA and analyse its geometry. Locally, the internal $S^6$ geometry corresponds to a warped fibration of $S^2$ and a hemisphere of $S^4$. This can be regarded as a warped generalisation of the usual twistor fibration geometry. Finally, the triplet of Killing spinors corresponding to the ${cal N}=3$ solution are constructed and shown to obey the massive type IIA Killing spinor equations.
We study the cubic vertices for Maxwell-like higher-spins in flat and (A)dS background spaces of any dimension. Reducibility of their free spectra implies that a single cubic vertex involving any three fields subsumes a number of couplings among diff erent particles of various spins. The resulting vertices do not involve traces of the fields and in this sense are simpler than their Fronsdal counterparts. We propose an extension of both the free theory and of its cubic deformation to a more general class of partially reducible systems, that one can obtain from the original theory upon imposing trace constraints of various orders. The key to our results is a version of the Noether procedure allowing to systematically account for the deformations of the transversality conditions to be imposed on the gauge parameters at the free level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا