ﻻ يوجد ملخص باللغة العربية
We study the cubic vertices for Maxwell-like higher-spins in flat and (A)dS background spaces of any dimension. Reducibility of their free spectra implies that a single cubic vertex involving any three fields subsumes a number of couplings among different particles of various spins. The resulting vertices do not involve traces of the fields and in this sense are simpler than their Fronsdal counterparts. We propose an extension of both the free theory and of its cubic deformation to a more general class of partially reducible systems, that one can obtain from the original theory upon imposing trace constraints of various orders. The key to our results is a version of the Noether procedure allowing to systematically account for the deformations of the transversality conditions to be imposed on the gauge parameters at the free level.
We give an explicit superspace construction of higher spin conserved supercurrents built out of $4D,mathcal{N}=1$ massless supermultiplets of arbitrary spin. These supercurrents are gauge invariant and generate a large class of cubic interactions bet
We investigate cubic interactions between a chiral superfield and higher spin superfield corresponding to irreducible representations of the $4D,, mathcal{N}=1$ super-Poincar{e} algebra. We do this by demanding an invariance under the most general tr
We continue the program of constructing cubic interactions between matter and higher spin supermultiplets. In this work we consider a complex linear superfield and we find that it can have cubic interactions only with supermultiplets with propagating
The simplest higher-spin interactions involve classical external currents and symmetric tensors $phi_{m_1 ... m_s}$, and convey three instructive lessons. The first is a general form of the van Dam-Veltman-Zakharov discontinuity in flat space for thi
At the free level, a given massless field can be described by an infinite number of different potentials related to each other by dualities. In terms of Young tableaux, dualities replace any number of columns of height $h_i$ by columns of height $D-2