ترغب بنشر مسار تعليمي؟ اضغط هنا

Using THz spectroscopy in external magnetic fields we investigate the low-temperature charge dynamics of strained HgTe, a three dimensional topological insulator. From the Faraday rotation angle and ellipticity a complete characterization of the char ge carriers is obtained, including the 2D density, the scattering rate and the Fermi velocity. The obtained value of the Fermi velocity provides further evidence for the Dirac character of the carriers in the sample. In resonator experiments, we observe quantum Hall oscillations at THz frequencies. The 2D density estimated from the period of these oscillations agrees well with direct transport experiments on the topological surface state. Our findings open new avenues for the studies of the finite-frequency quantum Hall effect in topological insulators.
Investigations of photoluminescence (PL) in the magnetic field of quantum structures based on the ZnSe quantum well with asymmetrical ZnBeMnSe and ZnBeSe barriers reveal that the introduction of Be into semimagnetic ZnMnSe causes a decrease of the ex change integrals for conductive and valence bands as well as the forming of a complex based on Mn, degeneration of an energy level of which with the energy levels of the V band of ZnBeMnSe or ZnSe results in spin-flip electron transitions.
We demonstrate that optical illumination strongly influences spin transport in n-type GaAs. Specifically, increasing the power density of optical spin pumping results in a significant expansion of the spin diffusion profile. A further means of manipu lation is the application of a weak transverse magnetic field, which strongly increases spin flow out of the excitation spot. These effects are directly monitored in spin imaging experiments and spatially resolved Hanle measurements.
We report a photoinduced change of the coercive field, i.e., a photocoercivity effect (PCE), under very low intensity illumination of a low-doped (Ga,Mn)As ferromagnetic semiconductor. We find a strong correlation between the PCE and the sample resis tivity. Spatially resolved dynamics of the magnetization reversal rule out any role of thermal heating in the origin of this PCE, and we propose a mechanism based on the light-induced lowering of the domain wall pinning energy. The PCE is local and reversible, allowing writing and erasing of magnetic images using light.
Experimental and theoretical studies of all-optical spin pump and probe of resident electrons in CdTe/(Cd,Mg)Te semiconductor quantum wells are reported. A two-color Hanle-MOKE technique (based on continuous-wave excitation) and time-resolved Kerr ro tation in the regime of resonant spin amplification (based on pulsed excitation) provide a complementary measure of electron spin relaxation time. Influence of electron localization on long-lived spin coherence is examined by means of spectral and temperature dependencies. Various scenarios of spin polarization generation (via the trion and exciton states) are analyzed and difference between continuous-wave and pulsed excitations is considered. Effects related to inhomogeneous distribution of $g$-factor and anisotropic spin relaxation time on measured quantities are discussed.
We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the differen ce in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.
We study bound magnetic polarons (BMP) in a very diluted magnetic semiconductor CdMnTe by means of site selective spectroscopy. In zero magnetic field we detect a broad and asymmetric band with a characteristic spectral width of about 5 meV. When ext ernal magnetic fields are applied a new line appears in the emission spectrum. Remarkably, the spectral width of this line is reduced greatly down to 0.24 meV. We attribute such unusual behavior to the formation of BMP, effected by sizable fluctuations of local magnetic moments. The modifications of the optical spectra have been simulated by the Monte-Carlo method and calculated within an approach considering the nearest Mn ion. A quantitative agreement with the experiment is achieved without use of fitting parameters. It is demonstrated that the low-energy part of the emission spectra originates from the energetic relaxation of a complex consisting of a hole and its nearest Mn ion. It is also shown that the contribution to the narrow line arises from the remote Mn ions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا