ترغب بنشر مسار تعليمي؟ اضغط هنا

268 - C. Alexandrou 2010
We present results on the Omega baryon electromagnetic form factors using $N_f=2+1$ domain-wall fermion configurations for three pion masses in the range of about 350 to 300 MeV. We compare results obtained using domain wall fermions with those of a mixed-action (hybrid) approach, which combine domain wall valence quarks on staggered sea quarks, for a pion mass of about 350 MeV. We pay particular attention in the evaluation of the subdominant electric quadrupole form factor to sufficient accuracy to exclude a zero value, by constructing a sequential source that isolates it from the dominant form factors. The $Omega^-$ magnetic moment, $mu_{Omega^{-}}$, the electric charge and magnetic radius, $langle r^{2}_{E0/M1} rangle$, are extracted for these pion masses. The electric quadrupole moment is determined for the first time using dynamical quarks.
We correct the values of the dominant nucleon to Delta axial transition form factors CA_5 and CA_6 published in C. Alexandrou et.al., Phys. Rev. D 76,094511 (2007). The analysis error affects only the values obtained when using the hybrid action in t he low Q^2 regime bringing them into agreement with those obtained with Wilson fermions.
We develop techniques to calculate the four Delta electromagnetic form factors using lattice QCD, with particular emphasis on the sub-dominant electric quadrupole form factor that probes deformation of the Delta. Results are presented for pion masses down to approximately 350 MeV for three cases: quenched QCD, two flavors of dynamical Wilson quarks, and three flavors of quarks described by a mixed action combining domain wall valence quarks and dynamical staggered sea quarks. The magnetic moment of the Delta is chirally extrapolated to the physical point and the Delta charge density distributions are discussed.
86 - C. Alexandrou 2007
The electromagnetic nucleon to Delta transition form factors are evaluated using two degenerate flavors of dynamical Wilson fermions and using dynamical sea staggered fermions with domain wall valence quarks. The two subdominant quadrupole form facto rs are evaluated for the first time in full QCD to sufficient accuracy to exclude a zero value, which is taken as a signal for deformation in the nucleon-Delta system. For the Coulomb quadrupole form factor the unquenched results show deviations from the quenched results at low q^2 bringing dynamical lattice results closer to experiment, thereby confirming the importance of pion cloud contributions on this quantity.
108 - C. Alexandrou 2007
We present results on the nucleon axial vector form factors $G_A(q^2)$ and $G_p(q^2)$ in the quenched theory and using two degenerate flavors of dynamical Wilson fermions for momentum transfer squared from about 0.1 to about 2 GeV^2 and for pion mass es in the range of 380 to 600 MeV. We also present results on the corresponding N to Delta axial vector transition form factors $C_5^A(q^2)$ and $C_6^A(q^2)$ using, in addition to Wilson fermions, domain wall valence quarks and dynamical staggered sea quarks provided by the MILC collaboration.
We evaluate the nucleon axial form factor, $G_A(q^2)$, and induced pseudoscalar form factor, $G_p(q^2)$, as well as the pion-nucleon form factor, $G_{pi N N}(q^2)$, in lattice QCD. We also evaluate the corresponding nucleon to $Delta$ transition form factors, $C_5^A(q^2)$ and $C_6^A(q^2)$, and the pion-nucleon-$Delta$ form factor $G_{pi NDelta}(q^2)$. The nucleon form factors are evaluated in the quenched theory and with two degenerate flavors of dynamical Wilson fermions. The nucleon to $Delta$ form factors, besides Wilson fermions, are evaluated using domain wall valence fermions with staggered sea quark configurations for pion masses as low as about 350 MeV. Using these form factors, together with an evaluation of the renormalized quark mass, we investigate the validity of the diagonal and non-diagonal Goldberger-Treiman relations. The ratios $G_{pi NDelta}(q^2)/G_{pi NN}(q^2)$ and $2C_5^A(q^2)/G_A(q^2)$ are constant as a function of the momentum transfer squared and show almost no dependence on the quark mass. We confirm equality of these two ratios consistent with the Goldberger-Treiman relations extracting a mean value of $1.61(2)$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا