ترغب بنشر مسار تعليمي؟ اضغط هنا

The electromagnetic form factors of the Omega in lattice QCD

351   0   0.0 ( 0 )
 نشر من قبل Constantia Alexandrou
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف C. Alexandrou




اسأل ChatGPT حول البحث

We present results on the Omega baryon electromagnetic form factors using $N_f=2+1$ domain-wall fermion configurations for three pion masses in the range of about 350 to 300 MeV. We compare results obtained using domain wall fermions with those of a mixed-action (hybrid) approach, which combine domain wall valence quarks on staggered sea quarks, for a pion mass of about 350 MeV. We pay particular attention in the evaluation of the subdominant electric quadrupole form factor to sufficient accuracy to exclude a zero value, by constructing a sequential source that isolates it from the dominant form factors. The $Omega^-$ magnetic moment, $mu_{Omega^{-}}$, the electric charge and magnetic radius, $langle r^{2}_{E0/M1} rangle$, are extracted for these pion masses. The electric quadrupole moment is determined for the first time using dynamical quarks.



قيم البحث

اقرأ أيضاً

107 - C. Alexandrou 2006
We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a l owest pion mass of about 400 MeV. In the full theory we use a lattice of spatial size 1.9 fm at beta=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. We compare our lattice results to the isovector part of the experimentally measured form factors.
Lattice simulations of QCD have produced precise estimates for the masses of the lowest-lying hadrons which show excellent agreement with experiment. By contrast, lattice results for the vector and axial vector form factors of the nucleon show signif icant deviations from their experimental determination. We present results from our ongoing project to compute a variety of form factors with control over all systematic uncertainties. In the case of the pion electromagnetic form factor we employ partially twisted boundary conditions to extract the pion charge radius directly from the linear slope of the form factor near vanishing momentum transfer. In the nucleon sector we focus specifically on the possible contamination from contributions of higher excited states. We argue that summed correlation functions offer the possibility of eliminating this source of systematic error. As an illustration of the method we discuss our results for the axial charge, gA, of the nucleon.
196 - C. Alexandrou 2011
We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off eff ects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.
We present results for the isovector electromagnetic form factors of the nucleon computed on the CLS ensembles with $N_f=2+1$ flavors of $mathcal{O}(a)$-improved Wilson fermions and an $mathcal{O}(a)$-improved vector current. The analysis includes en sembles with four lattice spacings and pion masses ranging from 130 MeV up to 350 MeV and mainly targets the low-$Q^2$ region. In order to remove any bias from unsuppressed excited-state contributions, we investigate several source-sink separations between 1.0 fm and 1.5 fm and apply the summation method as well as explicit two-state fits. The chiral interpolation is performed by applying covariant chiral perturbation theory including vector mesons directly to our form factor data, thus avoiding an auxiliary parametrization of the $Q^2$ dependence. At the physical point, we obtain $mu=4.71(11)_{mathrm{stat}}(13)_{mathrm{sys}}$ for the nucleon isovector magnetic moment, in good agreement with the experimental value and $langle r_mathrm{M}^2rangle~=~0.661(30)_{mathrm{stat}}(11)_{mathrm{sys}},~mathrm{fm}^2$ for the corresponding square-radius, again in good agreement with the value inferred from the $ep$-scattering determination [Bernauer et~al., Phys. Rev. Lett., 105, 242001 (2010)] of the proton radius. Our estimate for the isovector electric charge radius, $langle r_mathrm{E}^2rangle = 0.800(25)_{mathrm{stat}}(22)_{mathrm{sys}},~mathrm{fm}^2$, however, is in slight tension with the larger value inferred from the aforementioned $ep$-scattering data, while being in agreement with the value derived from the 2018 CODATA average for the proton charge radius.
We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ansatze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا