ترغب بنشر مسار تعليمي؟ اضغط هنا

The spinel vanadates have become a model family for exploring orbital order on the frustrated pyrochlore lattice, and recent debate has focused on the symmetry of local crystal fields at the cation sites. Here, we present neutron scattering measureme nts of the magnetic excitation spectrum in $mathrm{FeV_2O_4}$, a recent example of a ferrimagnetic spinel vanadate which is available in single crystal form. We report the existence of two emergent magnon modes at low temperatures, which draw strong parallels with the closely related material, $mathrm{MnV_2O_4}$. We were able to reproduce the essential elements of both the magnetic ordering pattern and the dispersion of the inelastic modes with semi- classical spin wave calculations, using a minimal model that implies a sizeable single-ion anisotropy on the vanadium sublattice. Taking into account the direction of ordered spins, we associate this anisotropy with the large trigonal distortion of $mathrm{VO_6}$ octahedra, previously observed via neutron powder diffraction measurements. We further report on the spin gap, which is an order-of-magnitude larger than that observed in $mathrm{MnV_2O_4}$. By looking at the overall temperature dependence, we were able to show that the gap magnitude is largely associated with the ferro-orbital order known to exist on the iron sublattice, but the contribution to the gap from the vanadium sublattice is in fact comparable to what is reported in the Mn compound. This reinforces the conclusion that the spin canting transition is associated with the ordering of vanadium orbitals in this system, and closer analysis indicates closely related physics underlying orbital transitions in $mathrm{FeV_2O_4}$ and $mathrm{MnV_2O_4}$.
The vibrational excitations of crystalline solids corresponding to acoustic or optic one phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak, a nd featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride (UN), showing well-defined, equally-spaced, high energy vibrational modes in addition to the usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator and characterizes independent motions of light nitrogen atoms, each found in an octahedral cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization of one of the fundamental, exactly-solvable problems in quantum mechanics. There are also practical implications, as the oscillator modes must be accounted for in the design of generation IV nuclear reactors that plan to use UN as a fuel.
We present a neutron diffraction study of FeV2O4, which is rare in exhibiting spin and orbital degrees of freedom on both cation sublattices of the spinel structure. Our data confirm the existence of three structural phase transitions previously iden tified with x-ray powder diffraction, and reveal that the lower two transitions are associated with sequential collinear and canted ferrimagnetic transitions involving both cation sites. Through consideration of local crystal and spin symmetry, we further conclude that Fe2+ cations are ferro-orbitally ordered below 135K and V3+ orbitals order at 60K in accordance with predictions for vanadium spinels with large trigonal distortions and strong spin-orbit coupling. Intriguingly, the direction of ordered vanadium spins at low temperatures obey `ice rules more commonly associated with the frustrated rare-earth pyrochlore systems.
Recent studies have reported the existence of an epitaxially-stabilized tetragonal-like (T-like) monoclinic phase in BiFeO3 thin-films with high levels of compressive strain. While their structural and ferroelectric properties are different than thos e of rhombohedral-like (R-like) films with lower levels of strain, little information exists on magnetic properties. Here, we report a detailed neutron scattering study of a nearly phase-pure film of T-like BiFeO3. By tracking the temperature dependence and relative intensity of several superstructure peaks in the reciprocal lattice cell, we confirm antiferromagnetism with largely G-type character and TN = 324 K, significantly below a structural phase transition at 375 K, contrary to previous reports. Evidence for a second transition, possibly a minority magnetic phase with C-type character is also reported with TN = 260 K. The co-existence of the two magnetic phases in T-like BiFeO3 and the difference in ordering temperatures between R-like and T-like systems is explained through simple Fe-O-Fe bond distance considerations.
Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in A-site spinel mat erials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of unusual magnetic order at low temperature. Here we present a comprehensive single-crystal neutron scattering study of CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5 K, there is a dramatic change in the elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.
Transverse-field muon spin rotation measurements of overdoped La2-xSrxCuO4 reveal a large broadening of the local magnetic field distribution in response to applied field, persisting to high temperatures. The field-response is approximately Curie-Wei ss like in temperature and is largest for the highest doping investigated. Such behaviour is contrary to the canonical Fermi-liquid picture commonly associated with the overdoped cuprates and implies extensive heterogeneity in this region of the phase diagram. A possible explanation for the result lies in regions of staggered magnetization about dopant cations, analogous to what is argued to exist in underdoped systems.
We have performed zero-field muon spin rotation measurements on single crystals of La_{2-x}Sr_{x}CuO_{4} to search for spontaneous currents in the pseudo-gap state. By comparing measurements on materials across the phase diagram, we put strict upper limits on any possible time-reversal symmetry breaking fields that could be associated with the pseudo-gap. Comparison between experimental limits and proposed circulating current states effectively eliminates the possibility that such states exist in this family of materials.
One of the primary goals of modern condensed matter physics is to elucidate the nature of the ground state in various electronic systems. Many correlated electron materials, such as high temperature superconductors, geometrically frustrated oxides, a nd low-dimensional magnets are still the objects of fruitful study because of the unique properties which arise due to poorly understood many-body effects. Heavy fermion metals - materials which have high effective electron masses due to these effects - represent a class of materials with exotic properties, such as unusual magnetism, unconventional superconductivity, and hidden order parameters. The heavy fermion superconductor URu2Si2 has held the attention of physicists for the last two decades due to the presence of a hidden order phase below 17.5 K. Neutron scattering measurements indicate that the ordered moment is 0.03 $mu_{B}$, much too small to account for the large heat capacity anomaly at 17.5 K. We present recent neutron scattering experiments which unveil a new piece of this puzzle - the spin excitation spectrum above 17.5 K exhibits well-correlated, itinerant-like spin excitations up to at least 10 meV emanating from incommensurate wavevectors. The gapping of these excitations corresponds to a large entropy release and explains the reduction in the electronic specific heat through the transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا