ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet

156   0   0.0 ( 0 )
 نشر من قبل Gregory MacDougall
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of unusual magnetic order at low temperature. Here we present a comprehensive single-crystal neutron scattering study of CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5 K, there is a dramatic change in the elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.

قيم البحث

اقرأ أيضاً

The ground state of a molecular diamond-lattice compound (ET)Ag$_4$(CN)$_5$ is investigated by the magnetization and nuclear magnetic resonance spectroscopy. We found that the system exhibits antiferromagnetic long-range ordering with weak ferromagne tism at a high temperature of 102 K owing to the strong electron correlation. The spin susceptibility is well fitted into the diamond-lattice Heisenberg model with a nearest neighbor exchange coupling of 230 K, indicating the less frustrated interactions. The transition temperature elevates up to $sim$195 K by applying pressure of 2 GPa, which records the highest temperature among organic molecular magnets. The first-principles band calculation suggests that the system is accessible to a three-dimensional topological semimetal with nodal Dirac lines, which has been extensively searched for a half-filling diamond lattice.
We study spin liquid in the frustrated diamond lattice antiferromagnet CoAl2O4 by means of single crystal neutron scattering in zero and applied magnetic field. The magnetically ordered phase appearing below TN=8 K remains nonconventional down to 1.5 K. The magnetic Bragg peaks at the q=0 positions remain broad and their profiles have strong Lorentzian contribution. Additionally, they are connected by weak diffuse streaks along the <111> directions. These observations are explained within the spiral spin liquid model as short-range magnetic correlations of spirals populated at these finite temperatures, as the energy minimum around q=0 is flat and the energy of excited states with q=(111) is low. The agreement is only qualitative, leading us to suspect that microstructure effects are also important. Magnetic field significantly perturbs spin correlations. The 1.5 K static magnetic moment increases from 1.58 mB/Co at zero field to 2.08 mB/Co at 10 T, while the magnetic peaks, being still broad, acquire almost Gaussian profile. Spin excitations are rather conventional spin waves at zero field, resulting in the exchange parameters J1=0.92(1) meV, J2=0.101(2) meV and the anisotropy term D=-0.0089(2) meV for CoAl2O4. The application of a magnetic field leads to a pronounced broadening of the excitations at the zone center, which at 10 T appear gapless and nearly featureless.
Order-disorder transitions are widely explored in various vortex structures in condensed matter physics, i.e., in the type-II superconductors and Bose-Einstein condensates. In this study, we have investigated the ordering of the polar vortex phase in the (PZT)n/(STO)n superlattice systems through phase-field simulations. An antiorder state is discovered for short periodicity superlattice on an SSO substrate, owing to the huge interfacial coupling between PZT and STO as well as the giant in-plane polarization in STO layers due to the large tensile strain. Increasing the periodicity leads to the anti-order to disorder transition, resulting from the loss of interfacial coupling and disappearance of the polarization in STO layers. On the other hand, for short periodicity superlattices, order-disorder-antiorder transition can be engineered by mediating the substrate strain, due to the delicate competition between the depoling effect, interfacial coupling, and strain effect. We envision this study to spur further interest towards the understanding of order-disorder transition in ferroelectric topological structures.
CoAl2O4 spinel with magnetic Co2+ ions on the diamond A-lattice is known to be magnetically frustrated. We compare neutron single crystal diffraction patterns measured in zero and applied magnetic fields with the ones obtained from classical Monte-Ca rlo models. In simulations we test the influence of various parameters on diffraction patterns: the ratio of nearest-, J1, and next-nearest, J2, neighbor interactions, magnetic field applied along the principal crystallographic directions, and random disorder on the A(Co2+)- and B(Al3+)- sites. We conclude that the models considered so far explain the broadening of magnetic Bragg peaks in zero magnetic field and their anisotropic response to applied magnetic field only partly. As bulk properties of our single crystal are isotropic, we suggest that its microstructure, specifically <111>-twin boundaries, could be a reason of the nonconventional magnetic order in CoAl2O4.
88 - R. Rawl , L. Ge , Z. Lu 2019
We successfully synthesized and characterized the triangular lattice anitferromagnet Ba$_8$MnNb$_6$O$_{24}$, which comprises equilateral spin-5/2 Mn$^{2+}$ triangular layers separated by six non-magnetic Nb$^{5+}$ layers. The detailed susceptibility, specific heat, elastic and inelastic neutron scattering measurements, and spin wave theory simulation on this system reveal that it has a 120 degree ordering ground state below T$_N$ = 1.45 K with in-plane nearest-neighbor exchange interaction ~0.11 meV. While the large separation 18.9 A between magnetic layers makes the inter-layer exchange interaction virtually zero, our results suggest that a weak easy-plane anisotropy is the driving force for the k$_m$ = (1/3 1/3 0) magnetic ordering. The magnetic properties of Ba$_8$MnNb$_6$O$_{24}$, along with its classical excitation spectra, contrast with the related triple perovskite Ba$_3$MnNb$_2$O$_9$, which shows easy-axis anisotropy, and the iso-structural compound Ba$_8$CoNb$_6$O$_{24}$, in which the effective spin-1/2 Co$^{2+}$ spins do not order down to 60 mK and in which the spin dynamics shows sign of strong quantum effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا