ﻻ يوجد ملخص باللغة العربية
Recent studies have reported the existence of an epitaxially-stabilized tetragonal-like (T-like) monoclinic phase in BiFeO3 thin-films with high levels of compressive strain. While their structural and ferroelectric properties are different than those of rhombohedral-like (R-like) films with lower levels of strain, little information exists on magnetic properties. Here, we report a detailed neutron scattering study of a nearly phase-pure film of T-like BiFeO3. By tracking the temperature dependence and relative intensity of several superstructure peaks in the reciprocal lattice cell, we confirm antiferromagnetism with largely G-type character and TN = 324 K, significantly below a structural phase transition at 375 K, contrary to previous reports. Evidence for a second transition, possibly a minority magnetic phase with C-type character is also reported with TN = 260 K. The co-existence of the two magnetic phases in T-like BiFeO3 and the difference in ordering temperatures between R-like and T-like systems is explained through simple Fe-O-Fe bond distance considerations.
In electrically polar solids optomechanical effects result from the combination of two main processes, electric field-induced strain and photon-induced voltages. Whereas the former depends on the electrostrictive ability of the sample to convert elec
Pb$_2$CoOsO$_6$ is a newly synthesized polar metal in which inversion symmetry is broken by the magnetic frustration in an antiferromagnetic ordering of Co and Os sublattices. The coupled magnetic and structural transition occurs at 45 K at ambient p
Substitutions in the Mn-sublattice of antiferromagnetic, charge and orbitally ordered manganites was recently found to produce intriguing metamagnetic transitions, consisting of a succession of sharp magnetization steps separated by plateaus. The com
In multiferroic BiFeO3 thin films grown on highly mismatched LaAlO3 substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic propert
Antiferromagnetic thin films are currently generating considerable excitement for low dissipation magnonics and spintronics. However, while tuneable antiferromagnetic textures form the backbone of functional devices, they are virtually unknown at the