ترغب بنشر مسار تعليمي؟ اضغط هنا

A non-commutative, planar, Hopf algebra of rooted trees was proposed in L. Foissy, Bull. Sci. Math. 126 (2002) 193-239. In this paper we propose such a non-commutative Hopf algebra for graphs. In order to define a non-commutative product we use a qua ntum field theoretical (QFT) idea, namely the one of introducing discrete scales on each edge of the graph (which, within the QFT framework, corresponds to energy scales of the associated propagators).
In this paper, we define a Hopf algebra structure on the vector space spanned by packed words using a selection/quotient coproduct. We show that this algebra is free on its irreducible packed words. We also construct the Hilbert series of this Hopf algebra and we investigate its primitive elements.
We propose a unified mathematical scheme, based on a classical tensor isomorphism, for characterizing entanglement that works for pure states of multipartite systems of any number of particles. The degree of entanglement is indicated by a set of abso lute values of the determinants for each subspace of the multipartite systems. Unlike other schemes, our scheme provides indication of the degrees of entanglement when the qubits are measured or lost successively, and leads naturally to the necessary and sufficient conditions for multipartite pure states to be separable. For systems with a large number of particles, a rougher indication of the degree of entanglement is provided by the set of mean values of the determinantal values for each subspace of the multipartite systems.
Generalized Bargmann representations which are based on generalized coherent states are considered. The growth of the corresponding analytic functions in the complex plane is studied. Results about the overcompleteness or undercompleteness of discret e sets of these generalized coherent states are given. Several examples are discussed in detail.
An operatorial method, already employed to formulate a generalization of the Ramanujan master theorem, is applied to the evaluation of integrals of various type. This technique provide a very flexible and powerful tool yielding new results encompassing various aspects of the special function theory.
We describe an algebra G of diagrams which faithfully gives a diagrammatic representation of the structures of both the Heisenberg-Weyl algebra H - the associative algebra of the creation and annihilation operators of quantum mechanics - and U(L_H), the enveloping algebra of the Heisenberg Lie algebra L_H. We show explicitly how G may be endowed with the structure of a Hopf algebra, which is also mirrored in the structure of U(L_H). While both H and U(L_H) are images of G, the algebra G has a richer structure and therefore embodies a finer combinatorial realization of the creation-annihilation system, of which it provides a concrete model.
This paper provides motivation as well as a method of construction for Hopf algebras, starting from an associative algebra. The dualization technique involved relies heavily on the use of Sweedlers dual.
74 - K. A. Penson 2009
We construct explicit solutions of a number of Stieltjes moment problems based on moments of the form ${rho}_{1}^{(r)}(n)=(2rn)!$ and ${rho}_{2}^{(r)}(n)=[(rn)!]^{2}$, $r=1,2,...$, $n=0,1,2,...$, textit{i.e.} we find functions $W^{(r)}_{1,2}(x)>0$ sa tisfying $int_{0}^{infty}x^{n}W^{(r)}_{1,2}(x)dx = {rho}_{1,2}^{(r)}(n)$. It is shown using criteria for uniqueness and non-uniqueness (Carleman, Krein, Berg, Pakes, Stoyanov) that for $r>1$ both ${rho}_{1,2}^{(r)}(n)$ give rise to non-unique solutions. Examples of such solutions are constructed using the technique of the inverse Mellin transform supplemented by a Mellin convolution. We outline a general method of generating non-unique solutions for moment problems generalizing ${rho}_{1,2}^{(r)}(n)$, such as the product ${rho}_{1}^{(r)}(n)cdot{rho}_{2}^{(r)}(n)$ and $[(rn)!]^{p}$, $p=3,4,...$.
63 - P. Blasiak 2009
The Heisenberg-Weyl algebra, which underlies virtually all physical representations of Quantum Theory, is considered from the combinatorial point of view. We provide a concrete model of the algebra in terms of paths on a lattice with some decompositi on rules. We also discuss the rook problem on the associated Ferrers board; this is related to the calculus in the normally ordered basis. From this starting point we explore a combinatorial underpinning of the Heisenberg-Weyl algebra, which offers novel perspectives, methods and applications.
59 - H. Cheballah 2008
In this paper, we show that the infinite generalised Stirling matrices associated with boson strings with one annihilation operator are projective limits of approximate substitutions, the latter being characterised by a finite set of algebraic equations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا