ترغب بنشر مسار تعليمي؟ اضغط هنا

192 - G. Sardanashvily 2016
Dmitri Ivanenko, professor of Moscow State University, was one of the great theoreticians of XX century, an author of the proton-neutron model of atomic nucleus. In honor of the 110th Year Anniversary.
The Chevalley-Eilenberg differential calculus and differential operators over N-graded commutative rings are constructed. This is a straightforward generalization of the differential calculus over commutative rings, and it is the most general case of the differential calculus over rings that is not the non-commutative geometry. Since any N-graded ring possesses the associated Z_2-graded structure, this also is the case of the graded differential calculus over Grassmann algebras and the supergeometry and field theory on graded manifolds.
86 - G. Sardanashvily 2016
We consider classical gauge theory on a principal bundle P->X in a case of spontaneous symmetry breaking characterized by the reduction of a structure group G of P->X to its closed subgroup H. This reduction is ensured by the existence of global sect ions of the quotient bundle P/H->X treated as classical Higgs fields. Matter fields with an exact symmetry group H in such gauge theory are considered in the pairs with Higgs fields, and they are represented by sections of a composite bundle Y->P/H->X, where Y->P/H is a fiber bundle associated to a principal bundle P->P/H with a structure group H. A key point is that a composite bundle Y->X is proved to be associated to a principal G-bundle P->X. Therefore, though matter fields possess an exact symmetry group H, their gauge G-invariant theory in the presence of Higgs fields can be developed. Its gauge invariant Lagrangian factorizes through the vertical covariant differential determined by a connection on a principal H-bundle P->P/H. In a case of the Cartan decomposition of a Lie algebra of G, this connection can be expressed in terms of a connection on a principal bundle P->X, i.e., gauge potentials for a group of broken symmetries G.
Based on a fact that complex Clifford algebras of even dimension are isomorphic to the matrix ones, we consider bundles in Clifford algebras whose structure group is a general linear group acting on a Clifford algebra by left multiplications, but not a group of its automorphisms. It is essential that such a Clifford algebra bundle contains spinor subbundles, and that it can be associated to a tangent bundle over a smooth manifold. This is just the case of gravitation theory. However, different these bundles need not be isomorphic. To characterize all of them, we follow the technique of composite bundles. In gravitation theory, this technique enables us to describe different types of spinor fields in the presence of general linear connections and under general covariant transformations.
Deformation quantization conventionally is described in terms of multidifferential operators. Jet manifold technique is well-known provide the adequate formulation of theory of differential operators. We extended this formulation to the multidifferen tial ones, and consider their infinite order jet prolongation. The infinite order jet manifold is endowed with the canonical flat connection that provides the covariant formula of a deformation star-product.
98 - G. Sardanashvily 2015
Non-autonomous non-relativistic mechanics is formulated as Lagrangian and Hamiltonian theory on fibre bundles over the time axis R. Hamiltonian mechanics herewith can be reformulated as particular Lagrangian theory on a momentum phase space. This fac ts enable one to apply Noethers first theorem both to Lagrangian and Hamiltonian mechanics. By virtue of Noethers first theorem, any symmetry defines a symmetry current which is an integral of motion in Lagrangian and Hamiltonian mechanics. The converse is not true in Lagrangian mechanics where integrals of motion need not come from symmetries. We show that, in Hamiltonian mechanics, any integral of motion is a symmetry current. In particular, an energy function relative to a reference frame is a symmetry current along a connection on a configuration bundle which is this reference frame. An example of the global Kepler problem is analyzed in detail.
65 - G. Sardanashvily 2015
The GNS representation construction is considered in a general case of topological involutive algebras of quantum systems, including quantum fields, and inequivalent state spaces of these systems are characterized. We aim to show that, from the physi cal viewpoint, they can be treated as classical fields by analogy with a Higgs vacuum field.
127 - G. Sardanashvily 2015
Applied to field theory, the familiar symplectic technique leads to instantaneous Hamiltonian formalism on an infinite-dimensional phase space. A true Hamiltonian partner of first order Lagrangian theory on fibre bundles $Yto X$ is covariant Hamilton ian formalism in different variants, where momenta correspond to derivatives of fields relative to all coordinates on $X$. We follow polysymplectic (PS) Hamiltonian formalism on a Legendre bundle over $Y$ provided with a polysymplectic $TX$-valued form. If $X=mathbb R$, this is a case of time-dependent non-relativistic mechanics. PS Hamiltonian formalism is equivalent to the Lagrangian one if Lagrangians are hyperregular. A non-regular Lagrangian however leads to constraints and requires a set of associated Hamiltonians. We state comprehensive relations between Lagrangian and PS Hamiltonian theories in a case of semiregular and almost regular Lagrangians. Quadratic Lagrangian and PS Hamiltonian systems, e.g. Yang - Mills gauge theory are studied in detail. Quantum PS Hamiltonian field theory can be developed in the frameworks both of familiar functional integral quantization and quantization of the PS bracket.
260 - G. Sardanashvily , A. Kurov 2014
We consider classical gauge theory with spontaneous symmetry breaking on a principal bundle $Pto X$ whose structure group $G$ is reducible to a closed subgroup $H$, and sections of the quotient bundle $P/Hto X$ are treated as classical Higgs fields. Its most comprehensive example is metric-affine gauge theory on the category of natural bundles where gauge fields are general linear connections on a manifold $X$, classical Higgs fields are arbitrary pseudo-Riemannian metrics on $X$, and matter fields are spinor fields. In particular, this is the case of gauge gravitation theory.
We consider classical gauge theory with spontaneous symmetry breaking on a principal bundle $Pto X$ whose structure group $G$ is reducible to a closed subgroup $H$, and sections of the quotient bundle $P/Hto X$ are treated as classical Higgs fields. In this theory, matter fields with an exact symmetry group $H$ are described by sections of a composite bundle $Yto P/Hto X$. We show that their gauge $G$-invariant Lagrangian necessarily factorizes through a vertical covariant differential on $Y$ defined by a principal connection on an $H$-principal bundle $Pto P/H$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا