ترغب بنشر مسار تعليمي؟ اضغط هنا

We show how the Jaynes--Cummings--Rabi model of cavity quantum electrodynamics can be realized via an isomorphism to the Hamiltonian of a qubit inside a parametric amplifier cavity. This realization clears the way to observe the full spectrum of the Rabi model via a probe applied to a parametric amplifier cavity containing a qubit and a parametric oscillator operating below threshold. An important outcome of the isomorphism is that the actual frequencies are replaced by detunings which make it feasible to reach the ultra-strong coupling regime. We find that inside this regime the probed spectrum displays a narrow resonance peak that is traced back to the transition between ground and first excited states. The exact form of these states is given at an energy crossing and then extended numerically. At the crossing, the eigenstates are entangled states of field and atom where the field is found inside squeezed cat states.
In the last few years, the great utility of PT-symmetric systems in sensing small perturbations has been recognized. Here, we propose an alternate method relevant to dissipative systems, especially those coupled to the vacuum of the electromagnetic f ields. In such systems, which typically show anti-PT symmetry and do not require the incorporation of gain, vacuum induces coherence between two modes. Owing to this coherence, the linear response acquires a pole on the real axis. We demonstrate how this coherence can be exploited for the enhanced sensing of very weak anhamonicities at low pumping rates. Higher drive powers ($sim 0.1$ W), on the other hand, generate new domains of coherences. Our results are applicable to a wide class of systems, and we specifically illustrate the remarkable sensing capabilities in the context of a weakly anharmonic Yttrium Iron Garnet (YIG) sphere interacting with a cavity via a tapered fiber waveguide. A small change in the anharmonicity leads to a substantial change in the induced spin current.
We study wave-particle duality by exploring for the first time effects of a quantum objects source. A single photon emitted from a pair of nonlocally entangled two-level atoms is specifically analyzed. Surprisingly, duality is found to be a condition al phenomenon depending on the photons atomic source. It can be tuned maximum, medium, and even minimum (completely absent) by the atomic state purity through an exact quadratic relation that can be called Duality Pythagorean Theorem. The analysis shows a new way of investigating duality by accounting how the single quantum object is created. The result sheds a new light on the fundamental understanding of the completeness of wave-particle duality, and can be tested in various practical physical systems.
We show how to generate tripartite entanglement in a cavity magnomechanical system which consists of magnons, cavity microwave photons, and phonons. The magnons are embodied by a collective motion of a large number of spins in a macroscopic ferrimagn et, and are driven directly by an electromagnetic field. The cavity photons and magnons are coupled via magnetic dipole interaction, and the magnons and phonons are coupled via magnetostrictive (radiation pressure-like) interaction. We show optimal parameter regimes for achieving the tripartite entanglement where magnons, cavity photons, and phonons are entangled with each other, and we further prove that the steady state of the system is a genuinely tripartite entangled state. The entanglement is robust against temperature. Our results indicate that cavity magnomechanical systems could provide a promising platform for the study of macroscopic quantum phenomena.
Using Maxwell-Bloch equations it has been shown how the superradiance can lead to amplification and gain at a frequency much larger than the pumping frequency. This remarkable effect has been examined in terms of a simpler model involving two coupled oscillators with one of them paramet- rically driven. We show that this coupled oscillator model has a hidden parity-time (PT) symmetry for QASER, we thus bring PT symmetry to the realm of parametrically coupled resonators. More- over, we find that the QASER gain arises from the broken PT symmetry phase. We then quantize the simplified version of the QASER using quantum Langevin equations. The quantum description enables us to understand how the system starts from quantum fluctuations.
A general theory is presented to describe optomechanical interactions of acoustic phonons, having extremely long lifetimes in superfluid $^4$He, with optical photons in the medium placed in a suitable electromagnetic cavity. The acoustic nonlinearity in the fluid motion is included to consider processes beyond the usual linear process involving absorption or emission of one phonon at a time. We first apply our formulation to the simplest one-phonon process involving the usual resonant anti-Stokes upconversion of an incident optical mode. However, when the allowed optical cavity modes are such that there is no single-phonon mode in the superfluid which can give rise to a resonant allowed anti-Stokes mode, we must consider the possibility of two phonon upconversion. For such a case, we show that the two step two phonon process could be dominant. We present arguments for large two step process and negligible single step two phonon contribution. The two step process also shows interesting quantum interference among different transition pathways.
Superradiance is one of the outstanding problems in quantum optics since Dicke introduced the concept of enhanced directional spontaneous emission by an ensemble of identical two-level atoms. The effect is based on correlated collective Dicke states which turn out to be highly entangled. Here we show that enhanced directional emission of spontaneous radiation can be produced also with statistically independent incoherent sources via the measurement of higher order correlation functions of the emitted radiation. Our analysis is applicable to a wide variety of quantum systems like trapped atoms, ions, quantum dots or NV-centers, and is also valid for statistically independent incoherent classical emitters. This is experimentally confirmed with up to eight independent thermal light sources.
We propose a scheme for the generation of a robust stationary squeezed state of a mechanical resonator in a quadratically coupled optomechanical system, driven by a pulsed laser. The intracavity photon number presents periodic intense peaks suddenly stiffening the effective harmonic potential felt by the mechanical resonator. These optical spring kicks tend to squeeze the resonator position, and due to the interplay with fluctuation-dissipation processes one can generate a stationary state with more than 13 dB of squeezing even starting from moderately pre-cooled initial thermal states.
We discuss the possible cooling of different phonon modes via three wave mixing interactions of vibrational and optical modes. Since phonon modes exhibit a variety of dispersion relations or frequency spectra with diverse spatial structures, dependin g on the shape and size of the sample, we formulate our theory in terms of relevant spatial mode functions for the interacting fields in any given geometry. We discuss the possibility of Dicke like collective effects in phonon cooling and present explicit results for simultaneous cooling of two phonon modes via the anti-Stokes up
We observe and investigate, both experimentally and theoretically, electromagnetically-induced transparency experienced by evanescent fields arising due to total internal reflection from an interface of glass and hot rubidium vapor. This phenomenon m anifests itself as a non-Lorentzian peak in the reflectivity spectrum, which features a sharp cusp with a sub-natural width of about 1 MHz. The width of the peak is independent of the thickness of the interaction region, which indicates that the main source of decoherence is likely due to collisions with the cell walls rather than diffusion of atoms. With the inclusion of a coherence-preserving wall coating, this system could be used as an ultra-compact frequency reference.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا