ﻻ يوجد ملخص باللغة العربية
In the last few years, the great utility of PT-symmetric systems in sensing small perturbations has been recognized. Here, we propose an alternate method relevant to dissipative systems, especially those coupled to the vacuum of the electromagnetic fields. In such systems, which typically show anti-PT symmetry and do not require the incorporation of gain, vacuum induces coherence between two modes. Owing to this coherence, the linear response acquires a pole on the real axis. We demonstrate how this coherence can be exploited for the enhanced sensing of very weak anhamonicities at low pumping rates. Higher drive powers ($sim 0.1$ W), on the other hand, generate new domains of coherences. Our results are applicable to a wide class of systems, and we specifically illustrate the remarkable sensing capabilities in the context of a weakly anharmonic Yttrium Iron Garnet (YIG) sphere interacting with a cavity via a tapered fiber waveguide. A small change in the anharmonicity leads to a substantial change in the induced spin current.
By embedding a $cal PT$-symmetric (pseudo-Hermitian) system into a large Hermitian one, we disclose the relations between $cal{PT}$-symmetric Hamiltonians and weak measurement theory. We show that the amplification effect in weak measurement on a con
The recently theoretical and experimental researches related to $mathcal{PT}$-symmetric system have attracted unprecedented attention because of various novel features and potentials in extending canonical quantum mechanics. However, as the counterpa
The dilation method is an important and useful way in experimentally simulating non-Hermitian, especially $cal PT$-symmetric systems. However, the time dependent dilation problem cannot be explicitly solved in general. In this paper, we consider a sp
The quantum correction to electrical conductivity is studied on the basis of two-dimensional Wolff Hamiltonian, which is an effective model for a spin-orbit coupled (SOC) lattice system. It is shown that weak anti-localization (WAL) arises in SOC lat
As the counterpart of PT symmetry, abundant phenomena and potential applications of anti-PT symmetry have been predicted or demonstrated theoretically. However, experimental realization of the coupling required in the anti-PT symmetry is difficult. H