ترغب بنشر مسار تعليمي؟ اضغط هنا

143 - Francois Henault 2013
Nowadays, it is commonly admitted that the experimental violation of Bells inequalities that was successfully demonstrated in the last decades by many experimenters, are indeed the ultimate proof of quantum physics and of its ability to describe the whole microscopic world and beyond. But the historical and scientific story may not be envisioned so clearly: it starts with the original paper of Einstein, Podolsky and Rosen (EPR) aiming at demonstrating that the formalism of quantum theory is incomplete. It then goes through the works of D. Bohm, to finally proceed to the famous John Bells relationships providing an experimental setup to solve the EPR paradox. In this communication is proposed an alternative reading of this history, showing that modern experiments based on correlations between light polarizations significantly deviate from the original spirit of the EPR paper. It is concluded that current experimental violations of Bells inequalities cannot be considered as an ultimate proof of the completeness of quantum physics models.
190 - Francois Henault 2008
Several types of Wavefront Sensors (WFS) are nowadays available in the field of Adaptive Optics (AO). Generally speaking, their basic principle consists in measuring slopes or curvatures of Wavefront Errors (WFE) transmitted by a telescope, subsequen tly reconstructing WFEs digitally. Such process, however, does not seem to be well suited for evaluating co-phasing or piston errors of future large segmented telescopes in quasi real-time. This communication presents an original, recently proposed technique for direct WFE sensing. The principle of the device, which is named Telescope-Interferometer (TI), is based on the addition of a reference optical arm into the telescope pupil plane. Then incident WFEs are deduced from Point Spread Function (PSF) measurements at the telescope focal plane. Herein are described two different types of TIs, and their performance are discussed in terms of intrinsic measurement accuracy and spatial resolution. Various error sources are studied by means of numerical simulations, among which photon noise sounds the most critical. Those computations finally help to define the application range of the TI method in an AO regime, including main and auxiliary telescope diameters and magnitude of the guide star. Some practical examples of optical configurations are also described and commented.
181 - Francois Henault 2008
Herein is discussed the performance of spaceborne nulling interferometers searching for extra-solar planets, in terms of their extinction maps projected on-sky. In particular, it is shown that the designs of Spatial Filtering (SF) and Achromatic Phas e Shifter (APS) subsystems, both required to achieve planet detection and characterization, can sensibly affect the nulling maps produced by a simple Bracewell interferometer. Analytical relationships involving cross correlation products are provided and numerical simulations are performed, demonstrating marked differences in the aspect of extinction maps and the values of attained fringes contrasts. It is concluded that depending on their basic principles and designs, FS and APS will result in variable capacities for serendipitous discoveries of planets orbiting around their parent star. The mathematical relationships presented in this paper are assumed to be general, i.e. they should apply to other types of multi-apertures nulling interferometers.
77 - Francois Henault 2008
This paper is the third part of a trilogy dealing with the principles, performance and limitations of what I named Telescope-Interferometers (TIs). The basic idea consists in transforming one telescope into a Wavefront Error (WFE) sensing device. Thi s can be achieved in two different ways, namely the off axis and phase-shifting TIs. In both cases the Point-Spread Function (PSF) measured in the focal plane of the telescope carries information about the transmitted WFE, which is retrieved by fast and simple algorithms suitable to an Adaptive Optics (AO) regime. Herein are evaluated the uncertainties of both types of TIs, in terms of noise and systematic errors. Numerical models are developed in order to establish the dependence of driving parameters such as useful spectral range, angular size of the observed star, or detector noise on the total WFE measurement error. The latter is found particularly sensitive to photon noise, which rapidly governs the achieved accuracy for telescope diameters higher than 10 m. We study a few practical examples, showing that TI method is applicable to AO systems on telescope diameters ranging from 10 to 50 m, depending on seeing conditions and magnitude of the observed stars. We also discuss the case of a space-borne coronagraph where TI technique provides high sampling of the input WFE map.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا