ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing extinction maps of star nulling interferometers

219   0   0.0 ( 0 )
 نشر من قبل Francois Henault
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Francois Henault




اسأل ChatGPT حول البحث

Herein is discussed the performance of spaceborne nulling interferometers searching for extra-solar planets, in terms of their extinction maps projected on-sky. In particular, it is shown that the designs of Spatial Filtering (SF) and Achromatic Phase Shifter (APS) subsystems, both required to achieve planet detection and characterization, can sensibly affect the nulling maps produced by a simple Bracewell interferometer. Analytical relationships involving cross correlation products are provided and numerical simulations are performed, demonstrating marked differences in the aspect of extinction maps and the values of attained fringes contrasts. It is concluded that depending on their basic principles and designs, FS and APS will result in variable capacities for serendipitous discoveries of planets orbiting around their parent star. The mathematical relationships presented in this paper are assumed to be general, i.e. they should apply to other types of multi-apertures nulling interferometers.



قيم البحث

اقرأ أيضاً

129 - Francois Henault 2008
This paper is the third part of a trilogy dealing with the principles, performance and limitations of what I named Telescope-Interferometers (TIs). The basic idea consists in transforming one telescope into a Wavefront Error (WFE) sensing device. Thi s can be achieved in two different ways, namely the off axis and phase-shifting TIs. In both cases the Point-Spread Function (PSF) measured in the focal plane of the telescope carries information about the transmitted WFE, which is retrieved by fast and simple algorithms suitable to an Adaptive Optics (AO) regime. Herein are evaluated the uncertainties of both types of TIs, in terms of noise and systematic errors. Numerical models are developed in order to establish the dependence of driving parameters such as useful spectral range, angular size of the observed star, or detector noise on the total WFE measurement error. The latter is found particularly sensitive to photon noise, which rapidly governs the achieved accuracy for telescope diameters higher than 10 m. We study a few practical examples, showing that TI method is applicable to AO systems on telescope diameters ranging from 10 to 50 m, depending on seeing conditions and magnitude of the observed stars. We also discuss the case of a space-borne coronagraph where TI technique provides high sampling of the input WFE map.
129 - Olivier Guyon 2013
A scheme to optimally design a beam combiner is discussed for any pre-determined fixed geometry nulling interferometer aimed at detection and characterization of exoplanets with multiple telescopes or a single telescope (aperture masking). We show th at considerably higher order nulls can be achieved with 1-D interferometer geometries than possible with 2-D geometries with the same number of apertures. Any 1-D interferometer with N apertures can achieve a 2(N-1)-order null, while the order of the deepest null for a random 2-D aperture geometry interferometer is the order of the N-th term in the Taylor expansion of e^{i(x^2+y^2)} around x=0, y=0 (2nd order null for N=2,3; 4th order null for N=4,5,6). We also show that an optimal beam combiner for nulling interferometry relies only 0 or Pi phase shifts. Examples of nulling interferometer designs are shown to illustrate these findings.
232 - Francois Henault 2008
Several types of Wavefront Sensors (WFS) are nowadays available in the field of Adaptive Optics (AO). Generally speaking, their basic principle consists in measuring slopes or curvatures of Wavefront Errors (WFE) transmitted by a telescope, subsequen tly reconstructing WFEs digitally. Such process, however, does not seem to be well suited for evaluating co-phasing or piston errors of future large segmented telescopes in quasi real-time. This communication presents an original, recently proposed technique for direct WFE sensing. The principle of the device, which is named Telescope-Interferometer (TI), is based on the addition of a reference optical arm into the telescope pupil plane. Then incident WFEs are deduced from Point Spread Function (PSF) measurements at the telescope focal plane. Herein are described two different types of TIs, and their performance are discussed in terms of intrinsic measurement accuracy and spatial resolution. Various error sources are studied by means of numerical simulations, among which photon noise sounds the most critical. Those computations finally help to define the application range of the TI method in an AO regime, including main and auxiliary telescope diameters and magnitude of the guide star. Some practical examples of optical configurations are also described and commented.
75 - Ji Wang 2020
Understanding the atmospheres of exoplanets is a milestone to decipher their formation history and potential habitability. High-contrast imaging and spectroscopy of exoplanets is the major pathway towards the goal. Directly imaging of an exoplanet re quires high spatial resolution. Interferometry has proven to be an effective way of improving spatial resolution. However, means of combining interferometry, high-contrast imaging, and high-resolution spectroscopy have been rarely explored. To fill in the gap, we present the dual-aperture fiber nuller (FN) for current-generation 8-10 meter telescopes, which provides the necessary spatial and spectral resolution to (1) conduct follow-up spectroscopy of known exoplanets; and (2) detect planets in debris-disk systems. The concept of feeding a FN to a high-resolution spectrograph can also be used for future space and ground-based missions. We present a case study of using the dual-aperture FN to search for biosignatures in rocky planets around M stars for a future space interferometry mission. Moreover, we discuss how a FN can be equipped on future extremely large telescopes by using the Giant Magellan Telescope (GMT) as an example.
Terrestrial laser interferometers for gravitational-wave detection made the landmark first detection of gravitational waves in 2015. We provide an overview of the history of how these laser interferometers prevailed as the most promising technology i n the search for gravitational waves. We describe their working principles and their limitations, and provide examples of some of the most important technologies that enabled their construction. We introduce each of the four large-scale laser interferometer gravitational-wave detectors in operation around the world today and provide a brief outlook for the future of ground-based detectors.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا