ﻻ يوجد ملخص باللغة العربية
This paper is the third part of a trilogy dealing with the principles, performance and limitations of what I named Telescope-Interferometers (TIs). The basic idea consists in transforming one telescope into a Wavefront Error (WFE) sensing device. This can be achieved in two different ways, namely the off axis and phase-shifting TIs. In both cases the Point-Spread Function (PSF) measured in the focal plane of the telescope carries information about the transmitted WFE, which is retrieved by fast and simple algorithms suitable to an Adaptive Optics (AO) regime. Herein are evaluated the uncertainties of both types of TIs, in terms of noise and systematic errors. Numerical models are developed in order to establish the dependence of driving parameters such as useful spectral range, angular size of the observed star, or detector noise on the total WFE measurement error. The latter is found particularly sensitive to photon noise, which rapidly governs the achieved accuracy for telescope diameters higher than 10 m. We study a few practical examples, showing that TI method is applicable to AO systems on telescope diameters ranging from 10 to 50 m, depending on seeing conditions and magnitude of the observed stars. We also discuss the case of a space-borne coronagraph where TI technique provides high sampling of the input WFE map.
Several types of Wavefront Sensors (WFS) are nowadays available in the field of Adaptive Optics (AO). Generally speaking, their basic principle consists in measuring slopes or curvatures of Wavefront Errors (WFE) transmitted by a telescope, subsequen
Due to the pervasive nature of decoherence, protection of quantum information during transmission is of critical importance for any quantum network. A linear amplifier that can enhance quantum signals stronger than their associated noise while preser
Intensity interferometry is a well known method in astronomy. Recently, a related method called incoherent diffractive imaging (IDI) was proposed to apply intensity correlations of x-ray fluorescence radiation to determine the 3D arrangement of the e
We demonstrate that the sensitivity of high-precision pulsar timing experiments will be ultimately limited by the broadband intensity modulation that is intrinsic to the pulsars stochastic radio signal. That is, as the peak flux of the pulsar approac
We demonstrate a method for accurately locking the frequency of a continuous-wave laser to an optical frequency comb in conditions where the signal-to-noise ratio is low, too low to accommodate other methods. Our method is typically orders of magnitu